
C++
Symmetric List Processor

(Gnu SLIP)
Users Manual

Slip User's Manual

Copyright © 2014 Arthur I. Schwarz

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-Cover texts being “C++
Symmetric List Processor (Gnu SLIP) Users Manual,” and with the Back-Cover Texts as in (a)
below.

A copy of the license is included in the section entitled

“GNU Free Documentation License.”

2

Slip User's Manual

Table of Contents
 1 .0Overview..8

 1.1 History...9

 1.2 Features...10

 1.3 SLIP vs STL List Containers...11

 1.4 Theory of Operation..12

 1.5 C++ Implementation...13

 1.6 Class Architecture...19

 2 .0Data..22

 2.1 Data Types..22

 2.2 Data Operations...24

 2.3 Simple Assignment...24

 2.4 Relational Operators...26

 2.5 Casting..28

 2.6 Unary Operations..29

 2.7 Binary Operations...30

 2.8 Bit and Shift Operations..31

 2.9 Complex Assignments..32

 3 .0Common Operations..33

 3.1 Interrogatories...33

 3.2 Replacement..35

 3.3 Insert Operations...37

 3.4 Move Operations...40

 3.5 Debug Tools..42

 3.6 Miscellaneous..46

 4 .0SlipCells...48

 4.1 SlipHeader...48

3

Slip User's Manual

 4.1.1 SlipHeader Methods..50
 4.1.2 Description List...59

 4.2 SlipSublist...61

 4.2.1 SlipSublist – SlipHeader Methods..62
 4.2.2 SlipSublist Methods..64

 4.3 SlipDatum...66

 4.4 Application Data Types...68

 4.4.1 Strings..72
 4.4.2 Application Data Type..74

 5 .0Iterators..77

 5.1 SlipSequencer..89

 5.2 SlipReader...90

 6 .0Errors...92

 6.1 Theory of Operation..92

 6.2 Error Message Format...93

 6.3 Application Callback function..94

 6.4 Message Object Format (SlipErr)...94

 6.5 SlipException..95

 7 .0Slip.h..96

 8 .0List Input / Output..97

 8.1 Lexical Elements...98

 8.1.1 Character Set...98
 8.1.2 Whitespace ...99
 8.1.3 Comments..99
 8.1.4 Tokens...100

 8.1.4.1 Separators..100
 8.1.4.2 Identifiers...100
 8.1.4.3 Keywords...101
 8.1.4.4 Constants...101

 8.2 List Language..108

 8.2.1 Include File Syntax..111
 8.2.2 Application Data Syntax...113

4

Slip User's Manual

 8.2.3 Named List Syntax..114
 8.2.4 List Syntax...116

 8.2.4.1 Description List...116
 8.2.5 Parser Syntax Equations..118

 8.3 Output...119

 8.4 Input from a List File..122

References...125

Appendix I Alphabetic Method List...128

Appendix II SlipCell Dump Styles...139

Copying...143

Tables
Table 1.3-1: SLIP vs STL List / Queue Containers..12
Table 2.1-1 Data Types ...22
Table 2.3-1 Assignment Operations...25
Table 2.4-1 Relational Operators...27
Table 2.6-1 Unary Operators..29
Table 2.7-1 Binary Operators...30
Table 2.8-1 Bit and Shift Operators..32
Table 2.9-1 Complex Assignments...32
Table 3.1-1 Interrogatories..34
Table 3.2-1 Replace Methods...36
Table 3.3-1 Insert Methods...38
Table 3.4-1 Move Methods...41
Table 3.5-1 Debug Methods ..42
Table 3.6-1 Miscellaneous Methods...47
Table 4-1 SlipCell Methods..48
Table 4.1-1 SlipHeader Constructors and Destructors...49
Table 4.1.1-1 SlipHeader General Methods...51
Table 4.1.1-2 SlipHeader Relational Operators..56
Table 4.1.1-3 Interrogatories...57
Table 4.1.1-4 Miscellaneous...57
Table 4.1.2-1 Descriptor List Methods...60
Table 4.2-1 SlipSublist Constructors and Destructors..62
Table 4.2.2-1 Assignment...65
Table 4.2.2-2 Relational Operators...65
Table 4.2.2-3 Miscellaneous Methods..66
Table 4.4-1 SlipPointer Constructors/Destructors..70

5

Slip User's Manual

Table 4.4-2 Application Data Type Operations..70
Table 4.4.1-1 Application Data Type string Creation...73
Table 4.4.2-1 Application Data Object Creation..76
Table 4.4.2-2 Anti-commutative Methods..77
Table 5-1 Advance Methods...79
Table 5-2 Miscellaneous Iterator Methods...80
Table 5.1-1 Constructors and Destructors..90
Table 5.1-2 Unique Selector Methods..90
Table 5.2-1 SlipReader Constructor/Destructors..91
Table 5.2-2 Unique SlipReader Methods...92
Table 6.4-1: Message Object Table..95
Table 6.5-1: SlipException Constructor...96
Table 6.5-2: SlipException Methods..96
Table 7-1: slip.h Utility Functions..97
Table 8.1.4-1 Integer Constant Equivalences...105
Table 8.1.4-2: Floating Point Equivalences..107
Table 8.1.4-3 String Equivalencies..108
Table 8.4-1: SlipRead Constructors..123
Table 8.4-2: SlipRead Methods..124
Table A.I-1: Alphabetic Method List..130
Table A.I-2: SlipReader Alphabetic Method List...138
Table A.II-1: SlipDatum Dump Values ..142

Examples
Example 2.1-1 Data Types...23
Example 2.3-1 Assignments..26
Example 2.5-1 Casting...29
Example 2.7-1 Binary Operation...31
Example 3.2-1: Replacement..37
Example 3.3-1 Insert Operations..39
Example 3.4-1 Move Operations..41
Example 4.1.1-1 SlipHeader...58
Example 4.3-1 Assignment...66
Example 4.3-2 SlipDatum..67
Example 5-1 Iterator Example..84
Example 5-2 advanceLER..85
Example 5-3 advanceLEL...86
Example 5-4 advanceLNR..86

6

Slip User's Manual

Example 5-5 advanceLNL..86
Example 5-6 advanceLWR...86
Example 5-7 advanceLWL...87
Example 5-8 advanceSER..87
Example 5-9 advanceSEL...88
Example 5-10 advanceSNR..88
Example 5-11 advanceSNL..88
Example 5-12 advanceSWR...89
Example 5-13 advanceSWL...89
Example 8.1.3-1 Comment Example..99
Example 8.1.4-1: Legal / Illegal Names...101
Example 8.1.4-2 Integral Constructions..103
Example 8.1.4-3 Real Number Constructions...104
Example 8.1.4-4 Character/String Input/Output..105
Example 8.2-1 List File..110
 Example 8.2.1-1: Include Syntax...111
Example 8.2.1-2: Include Syntax Errors...112
Example 8.2.2-1: Application Data Syntax..113
Example 8.2.3-1 Named List..115
Example 8.2.4-1 Lists...116
Example 8.2.4-2: Description List..117
Example 8.3-1: Output..121
Example 8.4-1 Reading a File without User Data..124
Example 1: Reading a File with User Data...125

Figures
Figure 1.5-1 Functional List Representation...16
Figure 1.5-2 Reader Iterator...17
Figure 1.5-3 Sequencer Iterator...18
Figure 1.6-1 SLIP Cell Architecture..19
Figure 1.6-2 User Defined Data...21
Figure 4.4-1: Application Data Type Base Class..72
Figure 4.4.1-1: SlilpString Inheritance...73
Figure 4.4.2-1: Application Framework...75

7

Slip User's Manual
Overview

 1 .0 Overview

In this document the name SLIP refers to the C++ Gnu SLIP implementation unless context or
terminology dictate otherwise.

SLIP is a suitable replacement for the C++ Standard Template Library (STL) List container,
<list> or the Queue container <queue>, template when the memory usage in the container is
unsuitable for the application or the container's functionality is too limited. The STL List
container should be the API of choice otherwise.

SLIP is an API which supports manipulation of complex graphs, trees, and lists. It provides the
capability to iterate over a structure and to create and insert lists or other structures, aka sublists,
within a list in order to create graphs and trees. It uses its own space management utilities and
uses the heap retrieve large globs of memory, does not have garbage collection, and is developed
with performance as an issue. Its goal is to provide extensive graph-centric capability and to be
suitable in both embedded and desktop systems. It is fit for use.

Where possible, the method names and method semantics conform to normal software
development and C++, vocabularies. Operations available should be familiar to C++ developers
and Software Engineers.

Primitives required to manipulate lists, delete and move lists and cells, insert new cells into lists
and other required list operations are included. List referencing ability is included and allows
multiple list references to the same list. The set of operations is meant to be comprehensive and
extensible, allowing application driven extensions of basic capabilities.

Using cells as a fundamental data type allows the user to write expressions such as X = Y, X ==
Y, X += Y and so on, where X and/or Y can be a SLIP cell or a C++ literal or variable.
Computations with SLIP cells yield the same results on 32/64-bit architectures.

Within the API framework an application can create its own data types dynamically. These
application defined data types are first class types which can participate in all operations,
including assignment, arithmetic, bit, and logical, as well as those specific to list manipulation.

No fuss, no muss, and no bother. The API is:

• Performance-centric. Attention is paid to short call sequences.

• Space-centric: SLIP dynamic space is defined by the user and there is no garbage collection.

• Application-centric: SLIP data types are treated as primitive C++ types.

8

Slip User's Manual
Overview

• Lists, trees, and graphs are supported.

Is it good? Depends on who 'you' are. It's liability is that with the richness in vocabulary there is a
stiff learning curve.

 1.1 History

The Symmetric List Processor (SLIP) (1)(3) was developed by Dr. J. Weizenbaum in 1963 as an
application programming interface (API) in FORTRAN II. SLIP can support acyclic graphs, trees
and lists but it can not correctly delete cyclic graphs (recursive lists). Previous work by
Weizenbaum(2) lead him to create SLIP. SLIP is a Symmetric List Processor in the sense that
links are bi-directional, allowing list traversal in a 'forward' or 'backwards' direction with equal
facility.

The FORTRAN II SLIP(3) code was used as a vehicle for a number of implementations on
different computers(5)(6)(11)(12) with generally good results, SLIP, performing the role as a symbolic
processing language, was used in non-mathematical implementations as a transactional
psychoanalyst, ELIZA(13), to perform symbolic solutions to systems of ordinary differential
equations(14), and to perform symbolic list operations(17).

One early issue was the inability of SLIP to recover cells from a cyclic graph(4). This issue was
addressed by Weizenbaum(6) as seldom occurring and needing little attention. Recovery of space
for cyclic graphs remains a pressing issue. Proposals to use garbage collection (mark and sweep
algorithms) were variously proposed as a solution(15)(19). SLIP is an API(8). Weizenbaum proposed
a solution to recovering the space in a cyclic graph by requiring the user to provide information
on when a list is being used(16) and then performing a garbage collection sweep when space is
exhausted by recognizing when a list is in active use, and can not be recovered, from when a list
is not in active use, and can be recovered.

SLIP uses constant sized cells. This aids in memory recapture but inhibits the generalized notion
of a list processor able to use any sized cell for any operation. A paper which addressed using
variable sized cells and the elaboration of garbage collection to accommodate this was
proposed(18). Other than the authors work there apparently was no traction to the concept and no
other documented efforts. This version of SLIP provides a means for an application to create
variable sized data items within a standard SLIP cell, but requires that data creation and deletion
operations be supported by the application.

9

Slip User's Manual
Overview

 1.2 Features

SLIP data cells are heterogeneous (they can changed dynamically, and they can be any one of
C++ types bool, char, unsigned char, long, unsigned long, string or double, and SLIP types
sublist reference (SlipSublist) or a user defined data type.

SLIP data cells can participate in operations as if they were C++ variables. That is, if X is a SLIP
data cell, and Y is a Slip data cell or a C++ literal or variable, then all the below operations are
legal:

X op Y
Y op X

Where op = {+ - * / % << >> | & < <= == => > }
Casting is done as required and in conformance to C++

X op= Y
Y op= X

Where 'op=' = { = += -= *= /= %= <<= >>= |= &= ^= }
Casting is done as required and in conformance to C++

(cast)Y
A Slip cell can be cast in any one of the defined C++ types according the C++
casting rules.

op Y Unary operations are supported {! ~ + -}.

The legality of the operation depends on the semantics of the data type of the SLIP cell.

An application can create a data type and SLIP will manage it. The application data type can be
configured to take part in C++ operations in a way determined by the application. All of the C++
unary, binary, and casting operations are available for redefinition.

Input / Output is round-trip. Input of a graph will recreate the original graph and data exactly.
This includes the graph topology and all SLIP data (bool, char, unsigned char, long, unsigned
long, string, double, and user data types). This allows retention of data between applications
and/or storage of intermediate values in ASCII.

Input and Output is ASCII. The user can create a graph in an editor for input into a SLIP defined
application. This allows the creation of configuration files, the construction of partial results, and
the incorporation of externally created acyclic graphs.

If () is a list, then so is (()). This allows construction of trees and graphs. For example, a 3 deep
binary tree can be represented as: ((()) (())). There is no inherent limit to the depth of trees or
graphs.

Lists can be shared. A list created for one purpose can be shared in other lists.

10

Slip User's Manual
Overview

Lists can be act as a stack, a queue, or a list. Primitives are provided for stack operations (pop,
push), for queue operations (enqueue, dequeue), and for iteration. SLIP does not impose a use
and a list can be used in all modes during an application.

List operations are time bounded:

1. Movement: O(1).

2. Delete: O(1).

3. Flush: O(1).

4. Copy: O(n).

5. Insertion: O(1).

Lists can have an associative list (called a Descriptor List). Each list can have an associative list
containing <key value> pairs, with operations to return a value based on a key.

Iterators are available for list traversal. The iterators can optimally traverse a list and sublists, or
can traverse a list and return from sublists. The later facility allows non-recursive entry into
complex graphs.

Memory is managed by the SLIP systems. There is no fragmentation and there is no garbage
collector.

Memory size used for SLIP cells is not limited and can grow dynamically. If the application
requires more SLIP cells than initially allocated the allocation amount will increase dynamically.

 1.3 SLIP vs STL List Containers

This comparison is fair. The intent is not to promote SLIP but to allow software engineers a
standard for judging suitability for use in a given application.

Most SLIP functionality can be hosted onto STL Lists. But each such effort comprises some
labor. The table presents SLIP functionality in comparison to basic STL List functionality
without considering any transformations of the STL List to yield the same results as SLIP. STL is
considered as it is and not as it might be.

11

Slip User's Manual
Overview

Table 1.3-1: SLIP vs STL List / Queue Containers

Criteria SLIP STL Description

Learning Curve long short Time to learn methods and use

Memory fragmentation no yes Can memory be fragmented over time

Embedded system use yes no Use of heap in STL precludes use in embedded systems

I/O yes2 no STL provides no I/O functionality

Graphs/Trees yes no STL supports lists, SLIP supports graphs

List sharing yes no STL supports lists and does not support embedded lists

Utility functions no yes STL provides sort, remove_if, etc.

Heterogeneous data yes no STL is not designed for dynamically changing data types

C++ operations native yes no STL has no mechanism for data to participate in op's

1 SLIP allows creation of SLIP data cells in a method and allows non-anonymous lists to be
created. If they are not deleted a hole will be created in SLIP managed space.
2 SLIP I/O should not be used in embedded systems. Output uses recursion and the stack, input is
iterative and uses the heap.

Although SLIP has more functionality than STL containers, that functionality comes at a cost in
learning, discipline in using, and an increased memory footprint. If that functionality is not
needed then it is better to use the STL containers, or if the project is simple enough, to build
your own.

 1.4 Theory of Operation

Include “slip.h” in each file where SLIP operations are being performed.

Before any SLIP operation is done, a slipInit should be executed. This acquires memory from the
heap and initializes it. If slipInit is not executed, then at the first SLIP operation requiring
memory, SLIP uses default values.

After all SLIP operations are completed, a deleteSlip should be executed. This returns all
memory to the heap. In order to continue after a deleteSlip, the application must execute a
slipInit.

12

Slip User's Manual
Overview

There is no concept of a SLIP object and there is no need to support a global object or function
parameter containing such an object. Once SLIP is initialized, SLIP can be used.

include slip.h
main() {
 SlipCellBase::slipInit(INITIALALLOCATION, DELTAALLOCATION);
 … your code …
 SlipCellBase.deleteSlip();
}

or

include slip.h
main() {
 … your code …
 SlipCellBase.deleteSlip();
}

and in each file using a SLIP method:

include slip.h
func() {
 … your code …
}

 1.5 C++ Implementation

This is a re-imagining of SLIP using C++. The basic structure and architecture is retained and the
changes are in keeping with current method operations and names. The original SLIP is
expressive and complete, and this is unchanged. The superficial differences are more a factor of a
new language and removal of archaic features then a matter of substance. In broad terms, the
organization of this implementation is the same as the original, FORTRAN II program.

FORTRAN II/IV/66/77 have a 6 character restriction on names. This has been removed and
name changes have been made to make underlying functionality clearer. These changes do not
change the underlying method semantics. In addition, names have been supplied to methods for
concepts in common use which were not common during the initial implementation. These
names, such as push() and pop(), use existing functionality, only giving a different name with
known and common semantics.

13

Slip User's Manual
Overview

SLIP is a symmetric list API. Each SLIP cell contains a pointer to the preceding and succeeding
cell, hence the list is “symmetric”. The SlipHeader cell is the list header and is a unique cell
with special properties. The preceding cell to the SlipHeader is the list tail (last cell in the list)
and the succeeding cell is the list top (the first cell in the list). For a null list, the list top and tail
is the SlipHeader. For a list with a single item, the list top and tail are the same and this is the
item.

A prime concern of the implementation has been to provide an API “friendly” to embedded
applications, both in terms of space utilization and in performance. The performance related
issues are not interface concerns and do not alter the interface or method functionality. The
specifics of the changes are contained in the underlying code and are presented in the SLIP
Reference Manual. The general nature of the optimization is to reduce the calling depth to
implement a given method, and to increase the use of inline code and/or to duplicate code as
required. Note that inline code is not available in the produced DLL's. To get the full
functionality and speed of inline code, SLIP must be compiled with the application.

This implementation (like the original) uses internal space management to control space usage.
The implementation focus is to provide required deterministic and space conserving
functionality for embedded systems and at the same time not limit usage to embedded
frameworks. This notion is built on the concept of using fixed size SLIP cells, allowing uniform
and straight-forward memory management, and provided a non-limited, dynamic expansion of
this space as required. The space grows dynamically.

Lists must be acyclic graphs. A cyclic graph is not recoverable to the free space list, called the
available space list (AVSL). With no loss in generality, acyclic graphs, trees, and (simple) lists
are all be handled by SLIP in a uniform and consistent manner.

Archaic features, such as saving the current state in preparation for recursion, have been
removed. The current implementation language (C++) contains the required mechanisms to
support recursion and other features in C++ make some features redundant or intrusive or
unnecessary.

Other features have been removed both to enable good programming practices and to allow the
application to focus on the problem rather than list handling mechanics. Prime amongst these
features is the removal of all requirements for the application to construct, remove, or change cell
link pointers. The provided API performs these operations and the application is prohibited from
doing them.

One augmentation not found in the original implementation is the use of datum. The original
SLIP was not aware of the type of datum in a SLIP cell. The user was required to extract the

14

Slip User's Manual
Overview

datum and use application specific knowledge to infer the type and perform operations on the
extracted data. The current implementation is aware of the type of datum stored into a cell, and
will perform data type operations based on the known type. A SLIP cell containing data is
considered as an atomic type with respect to usage. That is, without extraction of the datum in a
SLIP cell, the datum is allowed to participate in logical, bit and arithmetic operations. Simply,
cell1 + cell2 makes sense.

The application is allowed to put data into a SLIP data cell of the applications devising. The
mechanism separates the application management of data and operations from SLIP and allows
the application to provide data of any type and any size, subject to application provided space
management. That is, space management is an application and not a SLIP responsibility. In a
similar way, the application can override the SLIP provided operations to allow the application
data to participate in operations, such as cell1 + cell2, or the application can provide any
convenient class mechanism to augment the standard operations. If the election is to override
existing SLIP operations, then the SLIP kernel will perform operations, such as cell1 + cell2, on
the applications behalf. Otherwise in a manner analogous to the original SLIP API, the
application must extract the data and/provide specific application defined data operations.

The implementation uses three Slip Cell classes, SlipHeader, SlipSublist, and SlipDatum, and
two iterators, the SlipReader and SlipSequencer. The SlipHeader distinguishes a list header, the
SlipSublist is a reference to a list, and the SlipDatum contains application specified data. The
SlipReader is a structural reader which contains a memory of entered sublists, and the
SlipSequencer is a structural reader which does not contain a memory of entered sublists.

The representation of “(1 2 (3 4) (5))” is given in Figure 1.5-1 Functional List Representation.

15

Slip User's Manual
Overview

Figure 1.5-1 Functional List Representation

What is noted here is that each list ”(1 2 (3 4) (5)), (3 4), and (5)” is prefixed by a SlipHeader
and that a reference to a list by another list is effected by a SlipSublist. All SLIP cells at the same
list level have symmetric pointers and the SlipSublist reference to a list has a one-directional
pointer. The effect of this is that from any one SLIP cell the application can go to the preceding
or next cell but from a nested list the application can not return to the referencing SlipSublist
cell. Once in a list you stay in a list, except when a SlipReader is used as a list iterator.

Figure 1.5-2 Reader Iterator is a functional representation of a SlipReader initialized to the
outermost SlipHeader and advanced to the data cell containing '3'.

16

21

3 4 5

Slip User's Manual
Overview

Figure 1.5-2 Reader Iterator

Figure 1.2-2 Reader Iterator represents:

 1. SlipReader1: created when the SlipReader is created.

 a) The SlipHeader reference is to SlipHeader1

 b) The SLIP cell reference is to SlipHeader1

 2. Iterating through each cell until SlipSublist1 is reached causes the SLIP cell reference in the
SlipReader to change. The SlipHeader reference remains on SlipHeader1.

 3. On reaching SlipSublist1 a structural advance is made into the list represented by
SlipHeader2, “(3 4)”, whereupon:

 a) SlipReader2 is created.

 b) The SlipHeader reference in SlipReader2 is initialized to SlipHeader2.

 c) The SLIP cell reference is initialized to SlipHeader2.

 d) The SlipReader backpointer references SlipReader1.

 4. Advancing to “3” causes:

17

SlipReader1

21

3 4 5

SlipReader2

Slip User's Manual
Overview

 a) The SLIP reference pointer to reference the SLIP cell containing “3”.

At this point there is sufficient information for SlipReader2 to return to the previous list by
deleting SlipReader2 and restoring SlipReader1 as the current iterator. Not to fear, this is all done
behind the curtain without application interaction.

We have an iterator that can enter lists and return from lists, and that avoids the overhead of a
recursive entry.

Figure 1.5-3 Sequencer Iterator shows the same sequence of events when a SlipSequencer
iterator is used.

Figure 1.5-3 Sequencer Iterator

Iterating over the list used for Figure 1.2-3 we get.

 1. SlipSequencer: created when the SlipSequencer is created.

 a) There is no SlipHeader reference.

 b) The SLIP cell reference is to SlipHeader1.

18

21

3 4 5

SlipSequencer

Slip User's Manual
Overview

 2. Iterating through each cell until SlipSublist1 is reached causes the SLIP cell reference in the
SlipSequencer to change.

 3. On reaching SlipSublist1 a structural advance is made into the list represented by
SlipHeader2, “(3 4)”, whereupon:

 a) The SLIP cell reference is modified to reference SlipHeader2.

 4. Advancing to “3” causes:

 a) The SLIP cell reference to be modified ro reference the SLIP cell containing “3”.

The SlipSequencer does not have a memory. Although somewhat faster in execution, there is no
way for the iterator to know that it has entered a nested list or to return to the containing list.

In a word, the SlipReader has memory and the SlipSequencer does not.

 1.6 Class Architecture

The class hierarchy forms the framework for discussion and revelation. The classes show the
logical structure of objects and the relation between objects. The description of methods and the
overarching reach of each method is given with respect to the class architecture.

Figure 1.6-1 SLIP Cell Architecture shows the class hierarchy of a list cell. The penultimate
class, the SlipCellBase, is the base class for all objects extracted from the available space list
(AVSL).

Figure 1.6-1 SLIP Cell Architecture

19

SlipHeader SlipDatumSlipSublist

SlipCellBase

SlipCell

Slip User's Manual
Overview

Methods contained in SlipCellBase deal with object properties and initialization and debug
facilities for the AVSL. In SLIP there is no use of space other than the AVSL and hence, all SLIP
objects use the SlipCellBase as a root class.

There are three SLIP list cells, the SlipHeader, the SlipSublist and the SlipDatum. The direct
parent of these classes, the SlipCell, provides common functionality for list objects. Each list cell
tailors the functionality, as required, for its own use and makes this tailored functionality
available to the application.

Both the SlipCellBase and the SlipCell are pure abstract data types (ADT) and can not be
instantiated. The Slip classes SlipHeader, SlipSublist, and SlipDatum are concrete classes
available for instantiation.

• A SlipHeader object is a list header. Each list has one and only one SlipHeader and all
functionality associated with list manipulation and handling as a list are contained in this
class. The API includes some conveniences, some unique list functions, and maintenance
and control over a unique associative list called the Descriptor List.

• A SlipSublist object contains a reference to a list. Although there is one and only one
SlipHeader, hence all lists are unique, there may be many references to this list. Methods are
provided to support maintenance and reasonable questions involving the referenced
SlipHeader object.

All instances of a SlipSublist object are unique. Where the same list (defined by its
SlipHeader) can be on different lists or can be on the same list more than one time, each
reference has a unique SlipSublist object.

• A SlipDatum object contains data. The data can be either C++ typed data (bool, char,
unsigned char, long, unsigned long, and double) or application defined data (string and
PTR). Methods to manipulate, cast, perform logical, arithmetic, bit, and unary operations are
all contained here in a manner analogous to C++ operations on variables and literals. That is,
“D + X is sufficient to specify addition involving a SlipDatum object and another SlipDatum
object or a C++ object (literal or variable)..

Each SlipDatum object is unique. Where the same data type and value is needed more than once
on the same list, or must appear on more than one list, each instance is a unique SlipDatum
object.

All cells on a list must be from the AVSL. SlipHeader object and SlipSublist objects must be
from the AVSL. But temporary SlipDatum objects may be on the runtime stack, either at
application selection or created during expression evaluation by the SLIP system. No SLIP object
can ever be created or used from the heap. None. Nada. Never. No.

20

Slip User's Manual
Overview

Application defined data is a distinct data type with an associated data value contained in a
SlipDatum object. A SlipDatum object is a carrier for all application defined data. Application
defined data inherits from the class SlipPointer. There are two SLIP defined application data
classes, SlipStringConst and SlipStringNonConst. The remaining class, Pointer, is for application
use in defining application specific data to be inserted into lists.

The data in application defined data objects do not come from the AVSL. The application is
required to acquire space for the data object, and to manage this space. SLIP will not manage
application defined data space but defers all management to application provided methods. SLIP
data deletion or creation of space for application defined data is done by using these call back
methods.

It is important to be aware of data persistency in SLIP. All list cells are persistent outside of the
context of any given application method. List cells exists as long as an application is executing.
The application is required to delete lists, list objects, and list iterators when they are no longer
needed. Application defined data is deleted by invoking call back methods. If application data is
created within a method from the runtime stack, and the containing SlipDatum object is put on a

Figure 1.6-2 User Defined Data

 ist the object data will be deleted during method exiting but the list object will not.. When the
method is exited the SlipDatum object remains and references non-existent data. This is never
very good and can be very bad. The application must ensure that data which is meant to be
persistent is created from a persistent store.

Deleting a list containing non-persistent data will not necessarily delete the data at the time that
the list deletion operation is requested. There is a latency built into SLIP which delays list cell
deletion until the the AVSL is exhausted and more object space is needed. This delay is non-
deterministic.

If you create application defined data, create it from the heap or from a persistent data store. Do
not create application defined data on the runtime stack. The assumption by SLIP is that
application defined data is persistent and that the application will delete the data explicitly.

21

SlipPointer

<User DataType>

Slip User's Manual
Overview

The SlipPointer class is a pure abstract data type (ADT) and can not be instantiated. It contains
the intrface methods required to inform the application when data deletion and copy are
required, and support for returning a string representing raw application data and as a pretty-
printed string. A User Data Type data handling and memory management is subject to
application control.

 2 .0 Data

 2.1 Data Types

SLIP supports the data types given in Table 2.1-1 Data Types:

Table 2.1-1 Data Types

Data Type Notes

bool Boolean containing the value of true or false.

unsigned char 8-bit unsigned char (octet). 0 ≤ range ≤ 255

char 8-bit signed char (octet). −128 ≤ range ≤ 127

unsigned long 32-bit unsigned long. 0 ≤ range ≤ 4,294,967,295

long 32-bit signed long. −2,147,483,648 ≤ range ≤ 2,147,483,647

double 64-bit double. 2.2E-308 ≤ range ≤ 1.8E+308

string <string> string.

PTR Application defined pointer to a SlipPointer object.

The {unsigned char, char, unsigned long, and long} data types are called “discrete data”. Char
and unsigned char have a dual role as either a number or a UTF-8 character or both. Double is a
real number and string and PTR are SLIP defined data types. PTR and string will be handled
below.

A SlipDatum value with type bool has a value of '1' for true and '0' for false. Any operations
which cause an assignment of a non-bool to a bool will cause the value the bool to have the value
of '0' if the RHS is '0' or '1' for all other values. In any operation involving a bool on the RHS the
value of the bool will be '0' for false and '1' for true. In any operation in which a bool is on the

22

Slip User's Manual
Data

LHS, it will be converted to '1' if the bool is true and '0' if the bool is false before the operation,
and then converted to 'false' if the result of the operation is '0' or 'true' otherwise.

SLIP does not manage space on the heap or the runtime stack. SLIP only handles space on the
AVSL. SLIP provides several means to support the application in handling PTR and string space.

Use of the other data types is subject to C++ conversion rules. If, for example, the application
wants to assign the number '1' to a SlipCell, C++ will be amazingly obtuse if a type is not
specifically included. That is in Example 2.1-1:

C++ has no difficulty in inferring the type from the variable X. The type information is carried
along with the variable during compilation and is used by C++ to determine what the type for X
is, and hence, the required type for the assignment.

C++ can not infer the type of the literal '2'. The literal is ambiguous. The ambiguity arises
because C++ doesn't know which one of the discrete data types (unsigned char, char, unsigned
long, or long, and depending of the compiler, bool) is meant by '2'.. C++ will issue a nasty
message until the application provides an explicit type cast The expression will work because

Y = (long)2;

 the C++ required type information is included.

The issue of ambiguity in recognizing literal discrete values is pervasive. The recommendation is
to always use a type cast before a literal in any SLIP use. An explicit type cast avoids C++
compiler ambiguities.

23

char X = 1; // char variable with the value 1
SlipCell Y; // SlipCell with no initial value
Y = X; // type of X used
Y = 2; // 2 can be any discrete type
Y = 1.2; // type inferred as a double

Example 2.1-1 Data Types

Slip User's Manual
Data

 2.2 Data Operations

If Y is a SlipDatum object and X is a SlipDatum object or a C++ variable or literal, then Y op X
and X op Y, where op is an operator, are both legal expressions. SlipDatum objects are widened
before the operation is performed; bools and chars are converted to long, unsigned chars are
converted to unsigned long and doubles are unconverted. The normal C++ operation rules apply.

Strings, PTRs, SlipHeader and SlipSublist can only participate in the relational expressions ==
and !=. Comparisons involving a SlipHeader and a SlipSublist or two SlipSublists compare the
SlipHeader referenced in the SlipSublist.

When a bool participates in an operation its value is '1' for true and '0' for false.

 2.3 Simple Assignment

Assignment copies the right hand side (RHS) to the left hand side (LHS). The LHS cell remains
valid after the copy in the sense that although the cell value and type changes the cell location
does not. All pointers to the cell remain valid after the operation is complete.

Assignment is a like-to-like operation. In LHS = RHS, the SLIP cell type on the left hand side
(LHS) must be the same as the SLIP cell type on the right hand side (RHS) with the exception
that SlipSublist and SlipHeader cells are treated as referring to the SlipHeader.

SlipSublist = SlipSublist or SlipSublist = SlipHeader causes the SlipHeader
reference count in the LHS to be decremented by one and the list deleted if the count is zero. The
LHS SlipHeader reference is replaced by the RHS SlipHeader reference with the RHS
SlipHeader reference count incremented by one. The referenced list is shared.

For SlipHeader = SlipHeader the LHS SlipHeader is flushed and then the RHS SlipHeader
list is copied creating a new list. At the end of the operation the LHS SlipHeader list is a copy of
the RHS SlipHeader list. The lists are not shared.

The list copy operation causes SlipDatum object to be copied and SlipSublist objects to be
copied with the referenced SlipHeader reference count incremented by one. The copying
operation is not recursive. Only the topmost list entries are copied.

For both the SlipHeader and SlipSublist if the list reference in the LHS is the same as the RHS,
nothing is done.

24

Slip User's Manual
Data

SlipDatum object types are polymophic during assignment. An assignment operation between
two SlipDatum cell types, X = Y, is equivalent to (cast)X = Y. Where the cast casts the object
type of X into the object type of Y. In C++ the LHS data type is invariant. In SLIP it is not.

If the LHS SlipDatum object is a string or PTR then the data is deleted before the assignment. If
the RHS is a string or PTR then the value is copied. The exact meaning of deletion and copy are
explained when application data types are discussed.

Summarizing this in Table 2.3-1 Assignment Operations:

Table 2.3-1 Assignment Operations

LHS = RHS Format Description

H S D H S D LHS = (type)RHS

X X H1 = H2; Flush H1 and copy H2 to H1

X X H1 = S; Flush H1 and copy S.H2 to H1

X X S = H2; Flush S.H1 and copy H2 to S.H1

X X S1 = S2; Flush S1.H1 and copy S2.H2 to S1.H1

X X D1 = D2; Perform actions as if D2 were a literal

X D = (bool)X; Delete the old SlipDatum value and replace it with
X.

X D = (unsigned
char)X;

Delete the old SlipDatum value and replace it with X

X D = (char)X; Delete the old SlipDatum value and replace it with X

X D = (unsigned long)X; Delete the old SlipDatum value and replace it with X

X D = (long)X; Delete the old SlipDatum value and replace it with X

X D = (double)X; Delete the old SlipDatum value and replace it with X

X D = (string&)X; Delete the old SlipDatum value and copy X

X D = (PTR)X; Delete the old SlipDatum value and copy X

25

Slip User's Manual
Data

Legend

• H: SlipHeader cell
• S: SlipSublist cell
• D: SlipDatum cell
• X: literal data value

Example 2.3-1 Assignments provides some living, working examples of assignments.

 2.4 Relational Operators

The relational operators always succeed. If the test being performed is illegal or if the result of
the test is not true, then the value of a comparison is false.

The relational operators can be divided into equal (==) and unequal (!=) and everything else.
Equal and unequal work for all data types without exception. The remainder of operators work
for the SlipDatum objects and their operation depends on the object data types.

SlipHeader cells and pointers to SlipHeader cells are equal if they represent the same list.
SlipSublists are equal if they refer to the same SlipHeader cell, and a SlipSublist and SlipHeader
cell are equal if the SlipSublist cell refers to the SlipHeader cell. In all other cases the the result
of the comparison is false.

26

SlipHeader L1; // magically (1 2 (3 4) 5)
SlipHeader L2; // magically (5 (4 3) 2 1)
SlipHeader L3; // magically (5 6 7 8 9 0)
SlipReader R1(L1); // points to L1
SlipReader(R3(L3); // points to L3
L1 = L3; // L1: (5 6 7 8 9 0)
R1.advanceLWR(); // R1 → 5
R1 = L3; // ERROR: '5' can not be replaced by a list
R1 = (double)1.3;// L1: (1.3 6 7 8 9 0)
R1 = “str”; // L1: (“str” 6 7 8 9 0)
R2.advanceLNR(); // R1 → (4 3)
R2 = L3; // L2: (4 (5 6 7 8 9 0) 2 1)
L1.deleteList();
L2.deleteList();
l3.deleteList();

Example 2.3-1 Assignments

Slip User's Manual
Data

In a SlipDatum object, for all data types except PTR, the implementation of all comparisons is
identical to the C++ standard. Casts and return values are the same as defined in the C++
standard for all data types.

For PTR types equal and unequal are supported as a default, and only between PTR data types. If
two SlipDatum objects with PTR data types are compared, they are equal if the application data
object referenced in the SlipDatum objects are the same, otherwise they are unequal. As a
default, a PTR data type is uncastable. See the PTR section for more details on expanding the
comparisons.

String comparisons are based on the default C++ standard. In all cases, if the C++ standard
accepts a relational comparison between strings, then SLIP accepts the same comparison and
yields the same results. Note that the collating sequence of values is locale sensitive. The
standard locale used in the comparison is UTF-8, English.

If two SlipDatum objects are compared, or if a SlipDatum object and a literal are compared, then
true will be returned if the LHS can be cast to the same data type as the RHS, sic., the RHS cans
be cast to the same data type as the LHS, and the comparison is successful. In this case we say
that the the data type and the relation are “satisfiable”.

A SlipDatum object and a literal can be compared in any order. If 'op' is a relational operator and
D is a SlipDatum object, then both D op X and X op D are valid. Table 2.4-1 Relational
Operators summarizes these results. Where D op X is shown, X op D can be substituted.

Table 2.4-1 Relational Operators

LHS op RHS Format Description

H S D H S D LHS = (type)RHS

X == X H1 == H2; true if H1 and H2 are the same SlipHeader cell

X == X H1 == S; true if H1 and S.H2 are the same SlipHeader cell

X == X S == H2; true if S.H1 and H2 are the same SlipHeader cell

X == X S1 == S2; true if S1.H and S2.H reference the same list

X == X H1 == D2; false illegal comparison

X == X S1 == D2; false illegal comparison

X == X D1 == H1; false illegal comparison

27

Slip User's Manual
Data

Table 2.4-1 Relational Operators

LHS op RHS Format Description

H S D H S D LHS = (type)RHS

X == X D1 == S1; false illegal comparison

X op X D1 op D2; true for data type and relational satisfiability

X op D op (bool)X; true for data type and relational satisfiability

X op D op (unsigned char)X; true for data type and relational satisfiability

X op D op (char)X; true for data type and relational satisfiability

X op D op (unsigned long)X; true for data type and relational satisfiability

X op D op (long)X; true for data types and relational satisfiability

X op D op (double)X; true for data types and relational satisfiability

X op D op (string)X; true for data types and relational satisfiability

X op D op (PTR)X; true for data types and relational satisfiability

Legend

• H: SlipHeader cell.
• S: SlipSublist cell.
• D: SlipDatum cell.
• X: literal data value.
• == any one of '==' and '!='
• op any one of {<, <=, ==, >= ,>, !=}

 2.5 Casting

Casting is available for all data types except string and PTR. Casting of a bool, char, unsigned
char, long, unsigned long, and double works the same as in C++. The operation can be from a
SlipDatum object to another, or from a SlipDatum object to a application defined variable. In
Example 2.5-1 Casting, the value after casting is 15 in the data type cast for all discrete types.

28

Slip User's Manual
Data

The bool value true represents the value of '1' after casting and it has an stored representation of
'1' in the variable 'b'. Casting to a double yields a double value of (approximately) 15.0.

 2.6 Unary Operations

The allowed unary operations are {+, - , ++ prefix, ++ suffix, -- prefix, -- suffix, ~, and ! }.

The SlipDatum data types of string and PTR default can participate in a unary operation. This
default behavior can be changed for a PTR but not for a string. SlipHeader and SlipSublist cells
do not have unary operations, double can only participate in unary + and -, and bool can only
participate in unary +, -, !, and ~. This is summarized in Table 2.6-1 Unary Operators below

Table 2.6-1 Unary Operators

discrete data types

op bool char uChar long uLong Double String PTR result

~ X X X X X (ulong) bit not. (bool) 0xFFFF FFFF or 0x0

! X X X X X (bool) true if > 0 or (bool)false

+ X X X X X X (SlipDatum(T)) unchanged data value

- X X X X X X (SlipDatum(T)) arithmetic negation

++p X X X X (SlipDatum(T)) ++D

--p X X X X (SlipDatum(T)) D

++s X X X X (SlipDatum(T)) D++

--s X X X X (SlipDatum(T)) D

29

SlipDatum D((long)15);
bool b = (bool)D; // true
char c = (char)D; // 15
unsigned char uc = (unsigned char)D; // 15
long l = (long)D; // 15
unsigned long ul = (unsigned long)D; // 15
double d = (double)D; // 15.0

Example 2.5-1 Casting

Slip User's Manual
Data

Legend
• ~: bit not. Bools return 0xFFFF FFFF if true or 0x0 if false
• op: unary operation
• T: SlipDatum data type – any of the allowed data types. Unchanged after operation

completion
• D: SlipDatum((T))D data cell with type T. 'T' is unchanged after operation completion

 2.7 Binary Operations

The SlipDatum data types of string and PTR default is to not participate in a binary operation.
This default behavior can be changed for a PTR but not for a string. Data type double cannot
participate in modulus (%) operations. SlipHeader and SlipSublist cells do not have binary
operations.

SlipDatum objects can participate in a binary operation as the LHS, the RHS or both LHS and
RHS of an operation. The operation involves the data type and data value stored in the
SlipDatum object(s) and will yield the same result as C++ with the same data types and values.
The operations supported are {+, -, *, /, and %}. SlipDatum data type double does not have a
modulus (%) operation.

If either the LHS or RHS of an expression is a double data type then the resultant data type is
double. In all other cases the data type of the result is the same as C++ would return in operating
on the data types.

This is summarized in Table 2.7-1 Binary Operators.

Table 2.7-1 Binary Operators

discrete data types

op bool char uChar long uLong Double String PTR result

+ X X X X X X SlipDatum((T))

- X X X X X X SlipDatum((T))

* X X X X X X SlipDatum((T))

/ X X X X X X SlipDatum((T))

% X X X X (long)

30

Slip User's Manual
Data

Legend
• op: unary operation
• T: SlipDatum data type – any of the allowed data types. The resultant data type depends on

the underlying data types involved in the operation

Example 2.7-1 provides a digestible view of some binary operations. The resultant data type for
the modulus operations is (long). The additional data type depends on the C++ standard.

 2.8 Bit and Shift Operations

Bit operations are restricted to discrete types and bools. Doubles, strings, and PTRs are invalid.
The LHS, RHS, or both must be a SlipDatum object of the appropriate type. The resultant data
type of these operations is a long if the LHS is a SlipDatum object. Literals are cast to a long
before use, and bools have a value of '0' for false and '1' for true.

Shifting operations treat the input as unsigned, the sign bit is ignored. A right shift shifts the sign
bit and replaces bits shifted right by '0', and a left shift shifts through the sign bit and replaces bits
shifted left by '0'.

The operations and their result is given in table Table 2.8-1 Bit and Shift Operators.

31

SlipDatum X((ulong)20);
SlipDatum Y((char)7);
long a = 15;
unsigned char b = 17;

X + Y; // 27
X % a; // 6
b % y; // 3

Example 2.7-1 Binary Operation

Slip User's Manual
Data

Table 2.8-1 Bit and Shift Operators

op Description Example

Y << X Shift Y left by X bits 0xFFFF FFFF << 3 → 0xFFFF FFF8

Y >> X Shift Y right by X bits 0xFFFF FFFF >> 3 → 0x1FFF FFFF

Y & X Bit and Y and X 0x2222 1010 & 0x1234 5678 → 0x0220 1010

Y | X Bit or Y and X 0x2222 1010 | 0x1234 5678 → 0x3236 5678

Y ^ X Bit exclusive or Y and X 0x2222 1010 ^ 0x1234 5678 → 0x3026 4668

Legend
• Y: either a SlipDatum discrete or bool object or a literal
• X either a SlipDatum discrete or bool object or a literal

 2.9 Complex Assignments

A complex assignment consists of a binary, bit or shift operation symbol followed by an equal
sign. The legal combination of symbols are give in Table 2.9-1 Complex Assignments.

Table 2.9-1 Complex Assignments

op description allowed data types example

+= Add and assign bool, discrete data types, double D += X

-= Subtract and assign bool, discrete data types, double D -= X

*= Multiply and assign bool, discrete data types, double D *= X

/= Divide and assign bool, discrete data types, double D /= X

%= Take modulus and assign bool, discrete data types D %= X

<<= Shift left and assign bool, discrete data types D << X

>>= Shift right and assign bool, discrete data types D >>= X

&= Bit and and assign bool, discrete data types D &= X

|= Bit or and assign bool, discrete data types D |= X

^= Exclusive or and assign bool, discrete data types D &= X

Legend
• D: SlipDatum object

32

Slip User's Manual
Data

• X SlipDatum object, literal, or expression

The LHS can be a C++ variable or a SlipDatum object. The LHS SlipDatum data type is
invariant. The operation will cause a change of the SlipDatum value but not the SlipDatum data
type. The SlipDatum value takes part in the operation, which can be decomposed into D = D op
X, with D and X with the same meaning as in Table 2.9-1 Complex Assignments and op being
one of the operations in the table stripped of the concatenated equal sign (=).

SlipHeader, SlipSublist and string objects are never legal. Double is not legal for bit and shift
operations. SlipDatum data type PTR objects default iof illegal can be overriden.

If the LHS side is a variable and the result of expression evaluation of the RHS is a SlipDatum
object, then the SlipDatum object is cast to the data type of the LHS before op evaluation begins.
That is: V op D becomes V op (cast)D, where op is as above.

 3 .0 Common Operations

There are certain operations that are shared in common amongst the SLIP cells (SlipHeader,
SlipSublist, SlipDatum) directly and indirectly with the SLIP iterators (SlipReader,
SlipSequencer). These operations include interrogatories (are you?), assignment, replacement,
and logical operations.

Where applicable, operations available to the iterators are operations on the SLIP cell referenced
by the iterator and not the SlipHeader. They are not operations on the iterator itself.

 3.1 Interrogatories

All questions return a boolean (true or false). A true implies that the question is answered
successfully, and a false if the cell does not satisfy the question asked. Every non-iterator SLIP
cell has the interrogatories as a cell property.

The interrogatories apply to SlipHeaders, SlipSublists, and SlipDatum objects. When iterators are
used, then the SLIP cell referenced by the iterator is interrogated. The properties are owned by
the cell type not the cell. They are static in the sense that any object of a given cell type will give
the same answer to the same question.

The interrogatories are appropriately called the object properties. The format for method
invocation is ((SlipCellBase&)X).method(). The are listed in Table 3.1-1 Interrogatories.

33

Slip User's Manual
Common Operations

Table 3.1-1 Interrogatories

return ((SlipCellBase&)X).method() Description

bool isAVSL(const SlipCellBase*) Is the argument from the AVSL

bool isData() Is this a SlipDatum cell.

bool isDeleted() Has the cell been deleted (restored to the
AVSL).

bool isDiscrete() Is this a SlipDatum cell with a discrete number.

bool isHeader() Is the cell a SlipHeader.

bool isName() Is the cell a SlipSublist.

bool isNumber() Is this a SlipDatum cell with a number.

bool isPtr() Is the cell a application defined SlipDatum cell.

bool isReal() Is this a SlipDatum cell with a real.

bool isString() Is this a SlipDatum cell for a string.

bool isSublist() Is this a SlipSublist cell.

bool isTemp() Is this cell on the runtime stack.

bool isUnlinked() Is this cell not part of a list.

Note that isAVSL() requires a cell pointer to be input as an argument. Its invocation format is
isAVSL(X).

In common usage the application creates a SLIP cell object (cell) and asks about cell properties.
For example:

if (((SlipCellBase&)cell.)isReal()) … or
if (cell.isReal()) …

In this case the answer is 'true' if the cell is a SlipDatum cell and if the datum type is real (type
double). If the cell is not a SlipDatum cell or if the datum type is not real then the answer is false.

Some special considerations are required for “isAVSL()”. The question being asked is whether
the input cell is from the AVSL or the runtime stack or the heap. If it is from the AVSL then the
response is true. In all other cases the response is false. The cell itself may or may not be in a
list.

34

Slip User's Manual
Common Operations

 3.2 Replacement

We will call the object being replaced as the LHS and the source of the replacement, the RHS. In
a manner analogous to assignment, LHS = RHS implies that the LHS object data type and data
value will be replaced by the RHS object data type and data value. In assignment, the LHS data
value is replaced by the RHS data value.

The LHS must be either a SlipSublist or SlipDatum object. The RHS can be a SlipSublist,
SlipDatum, SlipHeader object or literal value.

The LHS must be on a list. The RHS may or may not be on a list.

Replace is a superset of simple assignment. It replaces like-to-like and unlike-to-unlike SLIP cell
types. When like-like replacements are done the result is the same as assignment. In unlike-to-
unlike both the data type and the data value change. In this mode there is no guarantee that the
SLIP object will not be deleted and references to the object are not reliable.

The valid LHS and RHS relations are:
• If a literal value is used, a new SlipDatum object is created and inserted into the list in place

of the LHS. The LHS object is deleted.
• If the LHS and RHS are type incompatible (one a SlipSublist and the other a SlipDatum)

then a new Slip object is created and inserted into the list and the LHS object deleted.
• If the LHS is a SlipSublist and the the RHS is either a SlipSublist or SlipHeader, then the

LHS SlipHeader reference count is decremented and the RHS SlipHeader reference inserted
and reference count incremented.

If the replacement creates a new object, the old object will be deleted and the new object inserted
into the list at the same location.

The SLIP API is given in Table 3.2-1 Replace Methods. All methods return a reference
(SlipCell&) to the new LHS list object. Method invocation is ((SlipCell&)X).method().

35

Slip User's Manual
Common Operations

Table 3.2-1 Replace Methods

return ((SlipCell&)X).method(). Description

SlipSublist& replace(const SlipHeader&) Creates a new SlipSublist object

SlipSublist& replace(const SlipSublist&) Creates a new SlipSublist object

SlipDatum& replace(const SlipDatum&) Uses input as a model

SlipDatum& replace(bool) Creates SlipDatum bool object

SlipDatum& replace(char) Creates SlipDatum char object

SlipDatum& replace(unsigned char) Creates SlipDatum uChar
object

SlipDatum& replace(long) Creates SlipDatum long object

SlipDatum& replace(unsigned long) Creates SlipDatum uLong
object

SlipDatum& replace(double) Creates SlipDatum double
object

SlipDatum& replace(const PTR, const void*
operation=null)

Creates SlipDatum PTR object

SlipDatum& replace(const string&, bool constFlag=false) Creates SlipDatum string object

SlipDatum& replace(const string*, bool constFlag=false) Creates SlipDatum string object

The PTR and string 2nd arguments are defaulted. They will be explained in Section 7, User Data
Types.

Some representative code is given in Example 3.2-1: Replacement.:

36

Slip User's Manual
Common Operations

 3.3 Insert Operations

SLIP objects and literals can be inserted to the left or right of the current cell. We designate the
current cell as the LHS of the operation and the object to be inserted as the RHS. The following
conditions apply:
• The LHS must either be a SlipHeader object or on a list.
• The RHS may not be on a list but must be from the AVSL and not the runtime stack,.
• The RHS may be a SlipHeader, SlipSublist, or SlipDatum object or a literal.

• Literals cause a new SlipDatum object to be created.
• A SlipHeader object causes a SlipSublist object to be created referencing the SlipHeader

and the SlipHeader reference count is incremented. The new SlipSublist object is
inserted into the list.

• A SlipSublist object is inserted into the current list. The referenced SlipHeader reference
count is not changed.

• A SlipDatum object is inserted into the current list.
• No SlipSublist or SlipDatum object can be on more than one list. A SlipSublist or

SlipDatum object need not be on any list.

Valid list cells are SlipHeader, SlipSublist, and SlipDatum object. Each list has one and only one
SlipHeader. Each list can have zero of more SlipSublist and SlipDatum objects, however, each
SlipSublist and SlipDatum object is unique. A list cell can not co-exist on two or more lists, and
although two or more SlipSublist objects can reference to the same SlipHeader (list), the objects
are unique.

An item can be inserted to the left or right of an existing item. The API is given in Table 3.3-1
Insert Methods. All methods return a reference to the inserted object. Method invocation is
((SlipCell&)X).method().

37

 //magically initialized to (1 2 (3 4) 5)
SlipHeader L1 = new SlipHeader();

 //magically initialized to (5 (4 3) 2 1)
SlipHeader L2 = new SlipHeader();)
SlipReader R1(L1);
SlipReader R2(L2);
R1.advanceLNR();
R2.advanceLWR().advanceLWR();
R1.replace(R2); // L1: (1 2 (4 3) 5) (3 4) deleted
R1.replace((bool)false));// L1: (1 2 false 5) (4 3) deleted
R1.replace((double)5.3));// L1: (1 2 5.3 5) false replaced
R1.replace(“str”); // L1: (1 2 “str” 5) 4.3 replaced
L1.deleteList();
l2.deleteList();

Example 3.2-1: Replacement

Slip User's Manual
Common Operations

Table 3.3-1 Insert Methods

return ((SlipCell&)X).method() Description

SlipSublist& insLeft(SlipHeader&) Create & insert a SlipSublist object

SlipSublist& insLeft(SlipSublist&) Copy & insert a SlipSublist object

SlipDatum& insLeft(SlipDatum&) Copy & insert a SlipDatum object

SlipDatum& insLeft(bool) Insert a new SlipDatum bool cell

SlipDatum& insLeft(char) Insert a new SlipDatum char cell

SlipDatum& insLeft(unsigned char) Insert a new SlipDatum uchar cell

SlipDatum& insLeft(long) Insert a new SlipDatum long cell

SlipDatum& insLeft(unsigned long) Insert a new SlipDatum ulong cell

SlipDatum& insLeft(double) Insert a new SlipDatum double cell

SlipDatum& insLeft(const PTR, const void*
operation=default)

Insert a new SlipDatum PTR cell

SlipDatum& insLeft(const string&, bool constFlag=false) Insert a new SlipDatum string cell

SlipDatum& insLeft(const string*, bool constFlag=false) Insert a new SlipDatum string cell

SlipSublist& insRight(SlipHeader&) Create & insert a SlipSublist object

SlipSublist& insRight(SlipSublist&) Copy & insert a SlipSublist object

SlipCell& insRight(SlipDatum&) Copy & insert a SlipDatum object

SlipDatum& insRight(bool) Insert a new SlipDatum bool cell

SlipDatum& insRight(char) Insert a new SlipDatum char cell

SlipDatum& insRight(unsigned char) Insert a new SlipDatum uchar cell

SlipDatum& insRight(long) Insert a new SlipDatum long cell

SlipDatum& insRight(unsigned long) Insert a new SlipDatum ulong cell

SlipDatum& insRight(double) Insert a new SlipDatum double cell

SlipDatum& insRight(const PTR, const void*
operation=default)

Insert a new SlipDatum PTR cell

SlipDatum& insRight(const string&, bool
constFlag=false)

Insert a new SlipDatum string cell

SlipDatum& insRight(const string*, bool constFlag=false) Insert a new SlipDatum string cell

38

Slip User's Manual
Common Operations

Some examples of use are given in Example 3.3-1 Insert Operations.

The variables (one, two, three, four) are typed by C++. This data type is used directly in the
method to determine the data type to use in creating a SlipDatum((T)) object. The data type T is
the data type of the variable, and the data value is the data value. When an integer literal is used
directly in the insert method the data type is ambiguous (it can be char, unsigned char, long, or
unsigned long). The application must provide a cast. Sorry, this is C++.

The insLeft() methods when used with a SlipHeader object is equivalent to an enqueue operation
onto a list. The insRight() methods when used with a SlipHeader object is equivalent to a push
operation onto a list. When used with a list cell, it is just an insert.

We can create S1 above by doing:

S1.insLeft(three).insRight(four);

chaining the insert commands together. Since S1 is initially an empty list, the application of
insLeft() puts 'three' on the top of the list returning a reference to 'three' and insRight() puts 'four'
to the right of 'three' creating a list, S1:(3 4).

39

SlipHeader L1 = new SlipHeader(); // create (1 2 (3 4) 5)
SlipHeader L2 = new SlipHeader(); // create (5 (4 3) 2 1)
SlipHeader S1 = new SlipHeader(); // create (3 4)
SlipHeader S2 = new SlipHeader(); // create (4 3)
long one = 1;
unsigned long two = 2;
char three = 3;
unsigned char four = 4;
S1.insLeft((char)3); // (3)
S1.insLeft(four); // (3 4)
S2.insRight(three); // (3)
S2.insRight((long)4); // (4 3)
L1.insLeft(one); // (1)
L1.insLeft(two); // (1 2)
L1.insLeft(S1); // (1 2 (3 4))
L1.insLeft((long)5); // (1 2 (3 4) 5)
L2.insRight((long)1); // (1)
L2.insRight((long)2); // (2 1)
L2.insRight(S2); // ((4 3) 2 1)
L2.insRight((long)5); // (5 (4 3) 2 1)
L1.deleteList(); // list restored to AVSL
L2.deleteList(); // list restored to AVSL
S1.deleteList(); // list restored to AVSL
S2.deleteList(); // list restored to AVSL

Example 3.3-1 Insert Operations

Slip User's Manual
Common Operations

This will work the same way when a list is not empty. In this case insLeft() will place a cell on
the bottom of the list and insRight() to its right.

In the context of an insert operation, a SlipHeader behaves the same as a list cell. When
performing an insert on a list cell, insLeft() puts the new cell before the current cell and
insRight() puts the new cell after the current cell. And so for a SlipHeader the normal names for
these operations is enqueue and push respectively.

 3.4 Move Operations

Move a cell or a group of cells from one list to another. The destination cell must be on a list, the
source cell may be on a list. The move operations change the location of list cells, they do not
change the list cell values. Hence, they are not equivalent to either an assignment or a replace.

To move an individual cell from one list to another, moveLeft() and moveRight() are the
methods to use. If the source cell in on a list, it will be unlinked and moved the the left or right of
an existing cell in the destination list. If the source cell is not on a list then the move will act as
an insert.

To move an entire list from one list to another, moveListLeft() and moveListRight() are the
methods to use. All cells in the source list are moved to the left or right of a cell in the
destination list. At the end of the operation, the source list will be empty.

The source list for a moveListLeft() and moveListRight() can be either a list header, SlipHeader
object, or a reference to a list, a SlipSublist object. In either case the operations are the same.

This is summarized in Table 3.4-1 Move Methods.

40

Slip User's Manual
Common Operations

Table 3.4-1 Move Methods

return ((SlipCell&)X).method() Description

SlipCell& moveLeft(SlipCell&) Move the source object to the left of the destination cell

SlipCell& moveRight(SlipCell&) Move the source object to the right of the destination
cell

SlipCell& moveListLeft(SlipHeader&) Move the source list to the left of the destination cell

SlipCell& moveListLeft(SlipSublist&) Move the referenced list to the left of the destination
cell

SlipCell& moveListRight(SlipHeader&) Move the source list to the right of the destination cell

SlipCell& moveListRight(SlipSublist&) Move the referenced list to the right of the destination
cell

Example 3.4-1 Move Operations shows the move operations.

Explaining the self-explanatory example, we assume L1 and L2 have been initialized without
going into the mechanisms of how.

• The SlipDatum variables, 'c1' and 'c2', are initialized using the method getRightLink(). This
method retrieves the 'next cell pointer' for a SlipCell and returns its value, a pointer to the
next cell. The pointer is dereferenced and assigned.

41

//magically initialized to (1 2 (3 4) 5)
SlipHeader L1 = new SlipHeader();

 //magically initialized to (5 (4 3) 2 1)
SlipHeader L2 = new SlipHeader();
SlipDatum& c1 = *(L1.getRightLink();) // '1' in L1
SlipSublist& c2 = *(L2.getRightLink()->getRightLink()); // (4 3) in L2
 // L1: (2 (3 4) 5)
c2.moveLeft(c1); // L2: (5 1 (4 3) 2 1)
 // L1: (2 (3 4) 5)
c1.moveLeft(c2); // L2: (5 (4 3) 1 2 1)
 // L1: (5 (4 3) 1 2 1 2 (3 4) 5)
L1.moveListRight(L2); // L2: ()
L1.deleteList();
L2.deleteList();

Example 3.4-1 Move Operations

Slip User's Manual
Common Operations

The interesting thing is that the 'cell' being referenced by 'c2' has granularity. The cell is a
SlipSublist type referencing a list. But, the list referenced is not 'seen' in this example, only
the container of the reference. It is an artifice of construction to show the contents of the
referenced list. There are various ways to enter or access the referenced list, but this example
does not require that knowledge.

The good news is that getRightLink() is there for use, the bad news is that it gives unlimited
access to SLIP internals and should be used with caution.

• The single cell referenced by 'c2' is moved to the left (preceding) the single cell referenced
by 'c1'. The cells were respectively located in list L2 and L1 and are now located in L2.

• The single cell referenced by 'c1' is moved to the left (preceding) the single cell referenced
by 'c2'. And now we observe a strange thing. Whereas before we moved a cell between two
lists, now we move a cell in the same list. Perfectly legal. The requirement is that the cells be
in a list, not that they be in different lists. This move changes the position of 'c1' from
preceding 'c2' to following 'c2' This could have been done in a single step by using
c2.moveRight(c1), but then there goes the example.

• The entire list L2 is moved to the right (following) the header of list L1. In other words, list
L2 is pushed onto L1. At the end of the operation L2 is empty and L1 contains both lists.

 3.5 Debug Tools

Sparse and skinny. There are some tools available to output characteristics of the SLIP system.
At the moment, there are no analytical tools. The analysis is left to the application. In time this
should change.

Given that the Slip.h header file is included, Table 3.5-1 Debug Methods lists the available
methods.

Table 3.5-1 Debug Methods

return function() Description

void avslHistory(bool) true start, false stop, initially false. Logs each insertion and
deletion event in the AVSL.

SlipState getSlipState() Returns internal state of SLIP.

Field Names Description

avail Total AVSL free cells (not accurate)

42

Slip User's Manual
Common Operations

Table 3.5-1 Debug Methods

return function() Description

alloc Initial allocation (in cells)

delta Incremental allocation (in cells)

total Total AVSL cells – both free and used

void printAVSL(caption) Pretty-print the AVSL state and AVSL list.

The AVSL state variables are output followed by a dump of
each cell in the AVSL list. The AVSL list cell dump
includes an ordinal number representing the cell position in
the AVSL list, with the first position being output as one
('1').

Output of the AVSL list is in order of appearance within
the list. Each cell is analyzed before output and diagnostics
messages are issued as required. Identifying which
fragment contains the cell is not done.

WARNINGS
• **** Left link is not 0xdeadbeef
• **** Sublist header pointer is NULL
• **** Sublist header pointer does not point to a

header
• **** Header reference count > 0. Header is still

active
• **** Number of cells in AVSL does not agree with

free space count

void printClassSizes() Outputs the size in bytes of each SLIP class.

void printMemory(caption) Output all cells in each AVSL fragment. A combination of
printFragmentList() and printAVSL()

void printFragmentList(caption) Outputs information for each fragment in the AVSL. The
output format is:
caption
AVSL start 0x######## stop 0x########
Fragment # low Water high Water size
cells
 Fragment ### 0x######## 0x######## #######

43

Slip User's Manual
Common Operations

Table 3.5-1 Debug Methods

return function() Description

void printState(string) String is the caption. Outputs the getSlipState() data.

void sysInfo(ostream&) Output system information, size of system objects.

Well, some background is probably needed to make sense out of what is being offerred.
getSlipState(), printClassSizes(), and printState() can probably stand up without further
discussion. For the rest, SLIP operation is discussed below.

Each SLIP cell, SlipHeader, SlipSublist, SlipDatum, and SlipReaderCell, is the same size. The
AVSL is a storage place for unallocated cells, and the AVSL space is managed by the SLIP
system. The fact that each cell is the same size means that there is no requirement for a garbage
collector, all 'holes' in the AVSL space are the same size and it is unneeded to perform space
compression and reorganization because of unequal sized space fragments. Remember that the
application data types are controlled by the application, and any fragmentation and garbage
collection issues are the application's responsibility.

The AVSL space is retrieved from the C++ heap in fragments. The first fragment is allocated
either using a default amount or by explicit application choice, and each additional fragment size
is determined in the same way, by default or by application choice. The meta-data supporting
space allocation is returned in getSlipState().

As cells are used by the application the AVSL space is diminished. When the total available
space becomes zero, the next cell allocation request causes an additional fragment of memory to
be retrieved from the heap. This increases the total AVSL space (both used and unused cells) by
the number of cells in the fragment.

The process of allocation from the heap continues until the C++ kernel reports that no more
space is available, that is, the space available in the heap is insufficient to satisfy the next
fragment request. This triggers a life threatening and fatal error message, and SLIP quits.

Now, as each fragment is allocated, the cells in the fragment are included in the AVSL. However,
the requests for cells from the AVSL and the return of cells to the AVSL is random. In time, the
strict relationship between the address of a cell in a fragment is lost, and the ordinal position of
the cell in the AVSL is dominant. However, since a cells address in memory doesn't change this
lets us view space in two ways. In one, we are concerned with where a cell exists in the AVSL.
This yields random cell addresses depending on the ordinal position of a cell in the AVSL. In the
other we can treat memory as a series of contiguous addresses, each contiguous region

44

Slip User's Manual
Common Operations

corresponding to a memory fragment. In this way we can output all memory by ordinal position
in the AVSL, printAVSL(), or by ordinal position in contiguous regions of memory,
printMemory() and printFragmentList().

Before we continue, and just as a side note, as cells are restored to the AVSL there is no effort to
compress memory by removing unneeded fragments, or to perform a garbage collection function
to reorganize cells in the AVSL so that fragments can be restored to the heap. The AVSL grows
but is never reduced. An application using SLIP should keep in mind that SLIP memory
utilization grows to a high-water mark and then stays there. Momentary fluctuations in memory
needs are permanent.

The printing of cells is in hexadecimal. The cell address, the left link and right link, and other
values are output as hexadecimal values. For SlipDatum cells, the output is a combination of
hexadecimal values for the SLIP administration values, and if possible, a configured string for
data,. That is, if the data value is a pointer, then the pointer value is output in hexadecimal. If the
pointer has a sensible string value, then this value is formatted and output also. If the data value
is a number or boolean then both the hexadecimal value for the number or boolean and the string
representation of the number of boolean are output.

printAVSL() outputs the list of unallocated cells as they are stored in the AVSL. The first cell
output is the first cell in the AVSL, and the last cell is the last cell in the AVSL. The physical
address of the calls, whether they are from any given fragment, is random, depending on the
sequence of cell allocation from the AVSL and deallocation to the AVSL.

There are certain relationships that SLIP cells have that must be satisfied. The relations are
checked and warnings issued during output by printAVSL(). Their meanings are:
• Left link is not 0xdeadbeef or 0xdeadbeefdeadbeef: Cells in the AVSL (unallocated cells)

are singly linked. The left link is set to 0xdeadbeef. If this is not true then SLIP has failed.
• All SlipSublist objects must reference a SlipHeader. When a SlipSublist object is deallocated

to the AVSL, this reference must be present. As a note, when an allocation request is made
for a SLIP cell, if the cell is a SlipSublist object, at that time the reference count of the
referenced SlipHeader is decremented. When the SlipHeader reference count is zero, the
SlipHeader and its list are deallocated.

• The Sublist header pointer does not point to a header. By definition a SlipSublist must
contain a reference to a SlipHeader object. If the object referenced is not a SlipHeader object
then something is definitely wrong.

• Header reference count > 0. Header is still active. If a SlipHeader object is in the AVSL (the
left link is 0xdeadbeef) then the reference count must be zero. If the reference count is not
zero then this indicates that there are live references to the SlipHeader object. This is a
problem.

45

Slip User's Manual
Common Operations

• Number of cells in AVSL does not agree with free space count Descending into sublists is
not done. The output cells correspond to the cells immediately available for allocation.
SlipSublists are unevaluated to determine if the contained list referenced by the sublist
should be be deallocated. The 'avail' field in getSlipState() is this number. If the actual count
is not the same then there is more (less) space on the AVSL then the counting of
allocation/deallocation events.

Not that fingers should be pointed, but some errors are most likely due to the application
misusing cell addresses. With the ability to retrieve a cell pointer using getRightLink() and
getLeftLink(), there is the ability to modify the cell directly. If not done correctly this will destroy
SLIP integrity. As a caution, there are methods available to modify all SLIP cell fields' needed by
an application. If a method is not available that permits a modification then this most probably
means that the application should not change it. If there is a method that permits an application
wanted modification, then probably this method should be used. Most modification methods are
inline methods, and there is no performance penalty for using them. Be afraid.

avslHistory() outputs each AVSL allocation/deallocation event. The history can be turned on or
off at the applications discretion. Although the AVSL has a defined and limited total space,
avslHistory() does not. It can continue forever. Consider an allocation of space for 10 cells. If a
loop is created where a SlipDatum object is alternatively allocated and deallocated, then the total
number of events output depends on the iteration count of the loop. The history is useful in
detecting errors of use but the output can be very large.

In summary what we have are two ways of looking at memory. Either as contiguous addresses in
a heap allocated fragment, or as a non-contiguous collection of cells on the AVSL. The total
space given when we retrieve the SLIP state reports the sum of all the space in all the fragments.
The available space given when we retrieve the SLIP state does not report the space which would
be available if SlipSublist referenced lists were deallocated. Modifying SLIP cells directly can
lead to a failure of SLIP.

 3.6 Miscellaneous

Well, there are always that oddball collection of methods which don't easily fit into any particular
category and which are too small in scope to present as a separate section. Here they are in Table
3.6-1 Miscellaneous Methods. To call each method except slipInit() use X.method(), where X
is an object of any class derived from SlipCellBase. slipInit() is called using the syntax,
SlipCellBase::slipinit().

46

Slip User's Manual
Common Operations

Table 3.6-1 Miscellaneous Methods

return ((SlipCell&)X).method() Description

Void deleteSlip() Frees all allocated memory. A slipInit() must be called to
if SLIP usage is required.

string dump() Hexadecimal dump of a cell.

string dumpLink() Hexadecimal dump of the previous/next pointers in a cell

ClassType getClassType() Each SLIP cell has a unique enumerated type:

enumeration description

eUNDEFINED Unallocated AVSL cell

eBOOL SlipDatum bool object

eDOUBLE SlipDatum double object

eHEADER SlipHeader object

eLONG SlipDatum long object

ePTR SlipDatum application defined object

eREADER SlipReaderCell – not the SlipReader

eSTRING SlipDatum string object

eSUBLIST SlipSublist

eUCHAR SlipDatum unsigned char object

eLONG SlipDatum long object

string getName() UTF-8 string representation of the cell object type.

void slipInit(alloc, delta) Sets the initial memory allocation size and the incremental
allocation size. This method should be called before the
first SLIP operation is executed. The default values of
10,000 initial SLIP cells and 10,000 additional SLIP cells
are used as the allocation amounts. If the delta = 0 then no
new space is allocated.

string toString() Pretty-printed SlipDatum value, hexadecimal dump of
other SLIP cells.

47

Slip User's Manual
SlipCells

 4 .0 SlipCells

This section includes all SLIP objects which can be a list cell. No other object than those defined
here can be in a list. All of the classes defined in this section can use the methods in Table 4-1
SlipCell Methods. Each method is called by X.method() where X is a SlipCell object.

Table 4-1 SlipCell Methods

return ((SlipCell&)X).method() Description

SlipCell* getLeftLink() Pointer to the previous cell in a list.

SlipCell* getRightLink() Pointer to the next cell in a list.

SlipCell& unlink() Remove the current SLIP cell from a list. This is
not a delete. The list is restructured around the
removed cell. The SlipHeader can not be unlinked.
Unless the unlinked cell is placed into another list,
it must be explicitly deleted.

 4.1 SlipHeader

Every list has one and only one unique header. The list header is responsible for remembering the
first and last cells on the list, tracking the number of lists the current list is a shared in, providing
the application the ability to 'mark' the list, and providing an associative list (called the
Descriptor List) for application use.

A list header and each cell in the list must be from the AVSL. No list and no list cell can be from
the heap or the runtime stack or from any application data store. The list must be created using
new, as in SlipHeader& list = *new SlipHeader();

Once a list is created, the application is responsible for deleting the list. If the list becomes a
member of another list this initial deletion will not cause the list to be destroyed. If the list is not
a member of another list then the list header and all list cells will be returned to the AVSL. When
the final list that the current list is a shared with is deleted, the current list will be deleted. That
is, the current list must be deleted once. If the current list is not subordinate to another list, then
this initial deletion will delete the list and its contents to the AVSL. If the current list is shared
with other lists, then deletion of the current list is automatic when all the other lists are deleted.

48

Slip User's Manual
SlipCells

Deletion of a list must use the deleteList() method and not the operator delete. Using the
operator delete causes the list to be inaccessible in all lists that it is a member of (and a
diagnostic message and exception will be generated).

Table 4.1-1 SlipHeader Constructors and Destructors gives the creation and deletion methods for
a SlipHeader object.

Table 4.1-1 SlipHeader Constructors and Destructors

return Format Description

SlipHeader* new SlipHeader() Create a SlipHeader from the AVSL

SlipHeader* new SlipHeader(SlipHeader&) Create a SlipHeader from the AVSL and populate it
with a copy of the cells from the input list

void ((SlipHeader&)X).deleteList() Reduces the reference count by 1. If the reference
count is zero, return the list and the SlipHeader to
the AVSL

Example 4.1.1-1 shows what happens when a list is created, used, and deleted.

The reference count of L1 and L2 is set to '1' during initial creation (reference counts are
explained below). During the insert of L1 into L2, the reference count of L1 is incremented.
When L1 is deleted, the reference count is decremented but since it is not zero, the list is not
recovered to the AVSL, i.e., it still exists. When L2 is deleted its reference count is decremented
causing it to be recovered to the AVSL. When the AVSL uses the SlipSublist reference to L1, it
decrements the reference count, and since if it is zero, ir will then recover L1 to the AVSL. There
is one little fly stuck to the fly paper. The C++ variables., L1 and L2, remain pointing to a non-
existent list. This is an artifact of being an API instead of a system. This condition can be
checked by using various interrogatories until L1 or L2 is reused. At that time the variables will

49

SlipHeader L1 = new SlipHeader(); // L1: ()
SlipHeader L2 = new SlipHeader(); // L2: ()
L2->insLeft(L1); // L2: (())
L1.deleteList(); // L1: Still exists
L2.deleteList(); // L1: kaput, L2 kaput

Example 4.1-1 SlipHeader Delete

Slip User's Manual
SlipCells

point to an object whose current use is valid but which is not the same as the application
assumes. Or, if your not careful your dead.

The following constructor uses are illegal:

SlipHeader L; // Attempt to create a list header on the stack
SlipHeader L(); // Didn't learn the first time
SlipHeader L1(L2); // Attempt to repeat your error & copy L2

SlipHeader objects contain an associative list. The associative list is a 2-tuple, <key, value> pair,
where the key is a searchable item and value it's associated value. The section on Description
Lists will address this more fully.

 4.1.1 SlipHeader Methods

SlipHeader has some characteristics unique to its nature and useful to applications. An
application can empty a list, flush(), query the list to see if it is empty, isEmpty(), place an
application mark into the list and then query a list for its mark, putMark(), getMark()
respectively.

A list has a size (the number of cells in a list) and an application can get this size, size(). The size
is defined as the number of cells visible in the list without descending into sublists. It is not a
recursive search of the list to determine the total size of the topmost list and all subordinate lists.
A note, getting the size is slow.

Each SlipHeader object maintains a reference count giving the number of times the list is
referenced. When the list is created, this reference count's value is set to '1'. Each time a sublist
references the list, the reference count is incremented, and each time that a sublist is deleted (and
hence, the reference is removed) the reference count is decremented. The total outstanding
references to a list can be no more than 65,535. getRefCount() gives the application the ability
to see the current number of references to a list.

There is a 15-bit field set aside for exclusive use by an applcation. There are no restrictions on
use of this field other than it's size. Access to the data is given with getMark() and storage of
data into the field is given by putMark().

In a manner similar to getting a substring, it is possible to create a new list by removing a
fragment of a more established one. In splitLeft(), all list cells to the left of and including the
input list are used to create a new list. The list cells are removed from the current list and moved
to a list just created. In the same way, splitRight() creates a new list and moves all list cells to

50

Slip User's Manual
SlipCells

the right of and including the current list the new list. If the input cell is the list header, the
resulting new list is empty;

There is a close relationship between a SlipHeader, the list container, and a SlipSublist object, a
reference to a list. In many cases operations which involve a SlipHeader and a SlipSublist will
use the SlipHeader reference in the SlipSublist object. The descriptive text or context in tables
and figures will make clear when the SlipSublist requires a the SlipSublist object or the the
SlipHeader reference contained in a SlipSublist.

Many of the common operations have a special nomenclature when the SlipHeader is the source
or destination. The nomenclature makes used of standard views of a list and standard ways of
addressing such use. In each case the invoking method is called with ((SlipHeader)X).method().
The original, common, methods are still available for use and are interchangeable with their
SlipHeader synonyms. A summary list of nomenclature changes is given below.

((SlipHeader)X).method()

common
name new name

Description

insRight() push() Insert an object to the top of a list (before the first cell).

InsLeft() enqueue() Insert an object to the bottom of a list (after the last cell).

replace() replaceBot() Replace the last object in a list

replace() replaceTop() Replace the first object in a list.

unlink() dequeue() Unlink the last cell in a list and return it's reference.

unlink() pop() Unlink the first cell in a list and return i'ts reference.

A complete list of SlipHeader general methods are provided in Table 4.1.1-1 SlipHeader General
Methods. All methods are invoked by ((SlipHeader&)X).method().

Table 4.1.1-1 SlipHeader General Methods

return ((SlipHeader&)X).method() Description

SlipCell& dequeue() Unlink from the list tail and return it's reference

SlipHeader& enqueue(SlipHeader&) Insert a new SlipSublist reference to the
SlipHeader to the list tail and return a reference to
the header

51

Slip User's Manual
SlipCells

Table 4.1.1-1 SlipHeader General Methods

return ((SlipHeader&)X).method() Description

SlipHeader& enqueue(SlipSublist&) Insert a copy of the SlipSublist to the list tail and
return a reference to the header

SlipHeader& enqueue(SlipDatum&) Insert a copy of the SlipDatum to the list tail and
return a reference to the header

SlipHeader& enqueue(bool) Insert a new SlipDatum bool to the list tail and
return return a reference to the header

SlipHeader& enqueue(char) Insert a new SlipDatum char to the list tail and
return a reference to the header

SlipHeader& enqueue(unsigned char) Insert a new SlipDatum unsigned char to the list tail
and return a reference to the header

SlipHeader& enqueue(long) Insert a new SlipDatum long to the list tail and
return a reference to the header

SlipHeader& enqueue(unsigned long) Insert a new SlipDatum unsigned long to the list tail
and return a reference to the header

SlipHeader& enqueue(double) Insert a new SlipDatum double to the list tail and
return a reference to the header

SlipHeader& enqueue(PTR, const void*
operation=default))

Insert a new SlipDatum PTR to the list tail and
return a reference to the header (see User Defined
Types)

SlipHeader& enqueue(string&, bool
constFlag=false)

Insert a new SlipDatum string to the list tail and
return a reference to the header (see User Defined
Types)

SlipHeader& enqueue(string*, bool
constFlag=false)

Insert a new SlipDatum string to the list tail and
return a reference to the header (see User Defined
Types)

SlipCell& getBot() Return a reference to the list last cell

uShort getMark() Return the 15-bit application field value

uShort getRefCount() Return the number of list references

SlipCell& getTop() Return a reference to the list first cell

SlipHeader& flush() Empty the list

SlipCell& pop()

52

Slip User's Manual
SlipCells

Table 4.1.1-1 SlipHeader General Methods

return ((SlipHeader&)X).method() Description

SlipHeader& push(SlipHeader&) Insert a new SlipSublist reference to the
SlipHeader to the list front and return a reference to
new cell

SlipHeader& push(SlipSublist&) Insert a copy of the SlipSublist to the list front and
return a reference to the header

SlipHeader& push(SlipDatum&) Insert a copy of the SlipDatum to the list front and
return a reference to the header

SlipHeader& push(bool) Insert a new SlipDatum bool to the list front and
return a reference to the header

SlipHeader& push(char) Insert a new SlipDatum char to the list front and
return a reference to the header

SlipHeader& push(unsigned char) Insert a new SlipDatum unsigned char to the list
front and return a reference to the header

SlipHeader& push(long) Insert a new SlipDatum long to the list front and
return a reference to the header

SlipHeader& push(unsigned long) Insert a new SlipDatum unsigned long to the list
front and return a reference to the header

SlipHeader& push(double) Insert a new SlipDatum double to the list front and
return a reference to the header

SlipHeader& push(PTR, const void*
operation=default))

Insert a new SlipDatum PTR to the list front and
return a reference to the header (see User Defined
Types)

SlipHeader& push(string&, bool
constFlag=false)

Insert a new SlipDatum string to the list front and
return a reference to the header (see User Defined
Types)

SlipHeader& push(string*, bool
constFlag=false)

Insert a new SlipDatum string to the list front and
return a reference to the header (see User Defined
Types)

uShort putMark() Put a 15-bit value into the lislt mark field

SlipHeader& replace(const SlipHeader&) Illegal. SlipHeader can not be replaced

SlipHeader& replace(const SlipSublist&) Illegal. SlipHeader can not be replaced

53

Slip User's Manual
SlipCells

Table 4.1.1-1 SlipHeader General Methods

return ((SlipHeader&)X).method() Description

SlipHeader& replace(const SlipDatum&) Illegal. SlipHeader can not be replaced

SlipHeader& replace(bool) Illegal. SlipHeader can not be replaced

SlipHeader& replace(char) Illegal. SlipHeader can not be replaced

SlipHeader& replace(unsigned char) Illegal. SlipHeader can not be replaced

SlipHeader& replace(long) Illegal. SlipHeader can not be replaced

SlipHeader& replace(unsigned long) Illegal. SlipHeader can not be replaced

SlipHeader& replace(double) Illegal. SlipHeader can not be replaced

SlipHeader& replace(const PTR, const
void* operation=null)

Illegal. SlipHeader can not be replaced

SlipHeader& replace(const string&, bool
constFlag=false)

Illegal. SlipHeader can not be replaced

SlipSublist& replaceBot(const
SlipHeader&)

Replaces the list tail with a new SlipSublist object

SlipSublist& replaceBot(const
SlipSublist&)

Replaces the list tail with a new SlipSublist object

SlipDatum& replaceBot(const
SlipDatum&)

Replaces the list tail with a copy of the input

SlipDatum& replaceBot(bool) Replaces the list tail with a new SlipDatum bool

SlipDatum& replaceBot(char) Replaces the list tail with a new SlipDatum char

SlipDatum& replaceBot(unsigned char) Replaces the list tail with a new SlipDatum
unsigned char

SlipDatum& replaceBot(long) Replaces the list tail with a new SlipDatum long

SlipDatum& replaceBot(unsigned long) Replaces the list tail with a new SlipDatum
unsigned long

SlipDatum& replaceBot(double) Replaces the list tail with a new SlipDatum double

SlipDatum& replaceBot(const PTR, const
void* operation=null)

Replaces the list tail with a new SlipDatum PTR

SlipDatum& replaceBot(const string&, bool
constFlag=false)

Replaces the list tail with a new SlipDatum string

54

Slip User's Manual
SlipCells

Table 4.1.1-1 SlipHeader General Methods

return ((SlipHeader&)X).method() Description

SlipDatum& replaceBot(const string*, bool
constFlag=false)

Replaces the list tail with a new SlipDatum string

SlipSublist& replaceTop(const
SlipHeader&)

Replaces the list front with a new SlipSublist object

SlipSublist& replaceTop(const
SlipSublist&)

Replaces the list front with a new SlipSublist object

SlipDatum& replaceTop(const
SlipDatum&)

Replaces the list front with a copy of the input

SlipDatum& replaceTop(bool) Replaces the list front with a new SlipDatum bool

SlipDatum& replaceTop(char) Replaces the list front with a new SlipDatum char

SlipDatum& replaceTop(unsigned char) Replaces the list front with a new SlipDatum
unsigned char

SlipDatum& replaceTop(long) Replaces the list front with a new SlipDatum long

SlipDatum& replaceTop(unsigned long) Replaces the list front with a new SlipDatum
unsigned long

SlipDatum& replaceTop(double) Replaces the list front with a new SlipDatum
double

SlipDatum& replaceTop(const PTR, const
void* operation=null)

Replaces the list front with a new SlipDatum PTR

SlipDatum& replaceTop(const string&,
bool constFlag=false)

Replaces the list front with a new SlipDatum string

SlipDatum& replaceTop(const string*, bool
constFlag=false)

Replaces the list front with a new SlipDatum string

unsigned size() Number of cell in topmost list w/o SlipHeader

SlipHeader& splitLeft(SlipCell&) New list with cells to the left including the input
cell

SlipHeader& splitRight(SlipCell&) New list with cells to the right including the input
cell

55

Slip User's Manual
SlipCells

The relational operators equal (==) and not equal (!=) are used to compare a SlipHeader object
with another SlipHeader object or SlipSublst object. The result of the comparison is true when
the SlipHeader reference refer to the same object. Any other data type other than a SlipHeader or
SlipSublist will return false. The remaining relational operations (<. <=. >=, >) will return false.
There is no sensible relationship between references other than equality. Relational operations
are commutative, X == Y and Y == X will yield the same result.

Table 4.1.1-2 SlipHeader Relational Operators shows the results of using == and !=. All other
relational operators yield false.

Table 4.1.1-2 SlipHeader Relational Operators

return SlipHeader& RHS Description

bool X == (SlipHeader&)Y Comparison legal

bool X == (SlipSublist&)Y Comparison legal

false X == (SlipDatum&)Y Comparison illegal

false X == literal Literal values are not legal

bool X != (SlipHeader&)Y Comparison legal

bool X != (SlipSublist&)Y Comparison legal

false X != (SlipDatum&)Y Comparison illegal

false X != literal Literal values are not legal

There are several ways of determining whether two list references are equal (as opposed to
referring to the same list). The references can refer to the same list, they are equal because they
are the same. Two different lists can have the same taxonomy, they are structurally equal. Two
lists can have the same taxonomy and the data type and values for equivalent locations on the
lists are the same, they are structurally and semantically identical. SLIP implements referential
and structural equality. The relational imperative, ==, checks for referential equality. The
interrogatory, isEqual(), checks for structural equality. It is always true that if two list references
are referentially equal then they are structurally equal. It is not always true that if two lists are
structurally equal they are referentially equal.

56

Slip User's Manual
SlipCells

All the common interrogatories are valid with a SlipHeader object, Table 4.1.1-3 Interrogatories,
shows those unique to SlipHeader objects.

Table 4.1.1-3 Interrogatories

return ((SlipHeader&)X).method() Description

bool isEmpty() true if the list is empty

bool isEqual(SlipHeader&) true if two lists are structurally
identical

An application can pretty-print the list with writeQuick() and writeToString() and can create a
list file with write(). These methods are described in the I/O section. The SlipHeader object can
be dumped, dump(), and the list can be dumped. dumpList(). The hexadecimal dump outputs the
binary for all SlipHeader objects and all SlipDatum and SlipSublist objects in the top level list
and all subordinate lists. These methods are given in Table 4.1.1-4 Miscellaneous.

Table 4.1.1-4 Miscellaneous

return ((SlipHeader&)X).method() Description

string dump() Return a hexadecimal dump of the SlipHeader object

void dumpList() Hexadecimal dump of the list to standard output

void write() Create a list file and output to cout

void write(ostream&) Create a list file and output to a stream

void write(string&) Create a list file and output to a file

void writeQuick() Output a list definition to cout

void writeQuick(ostream&) Output a list definition to a stream

string writeToString() Return a list definition

A hastily constructed example in Example 4.1.1-1 SlipHeader.

57

Slip User's Manual
SlipCells

Well, commenting on the example:
• Creation is no more than insLeft() and insRight() replaced by enqueue() and push()

respectively.
• Conditionals check existence features:

• L1 and L2 do not reference the same list. The conditional fails.
• L1 and L2 are structurally equal. The conditional succeeds.
• L1 is not empty. The conditional fails.

• The behavior of enqueue() is the same as insLeft(). When we enqueue a list header, a
SlipSublist object is created referencing the input list.

58

SlipHeader* L1 = new SlipHeader(); // create (1 2 (3 4) 5)
SlipHeader* L2 = new SlipHeader(); // create (5 (4 3) 2 1 (4 3))
SlipHeader* S1 = new SlipHeader(); // create (3 4)
SlipHeader* S2 = new SlipHeader(); // create (4 3)
long one = 1;
unsigned long two = 2;
char three = 3;
unsigned char four = 4;
//-------------------------- creation --------------------------//
S1->enqueue((char)3).enqueue (four); // (3 4)
S2->push(three); // (3)
S2->push((long)4); // (4 3)
L1->enqueue (one).enqueue(two).enqueue(S1);// (1 2 (3 4)
L1->enqueue ((long)5); // (1 2 (3 4) 5)
S2->L2->push((long)5); // (5 (4 3) 2 1)
//---------------------- interrogatories -----------------------//
if (L1 == L2) cout << “equal” << endl;// no output
if (L1->isEqual(L2)) cout << “isEqual” << endl;// output is “Equal”
if (L1->isEmpty()) cout << “isEmpty” << endl;// no output
//---------------------------- code ----------------------------//
L2->enqueue(S2); // (5 (4 3) 2 1 (4 3))
S2->getRefCount() // refCount = 3
L2->deleteList(); // list restored to AVSL
S2->getRefCount(); // refCount = 3
L1->setMark(0xF1); // mark = 0x71
L1->getMark(); // mark = 0x71
delete &L1->pop(); // L1: (2 (3 4) 5)
delete &L1->dequeue(); // L1: (2 (3 4))
L1->replaceBot(S2); // L1: (2 (4 3))
S1->getRefCount(); // refCount = 2
S2->getRefCount(); // refCount = 4
L1->replaceTop(“able”); // L1: (able (4 3))
//------------------------- destruction -------------------------//
L1->deleteList(); // list restored to AVSL
S1->deleteList(); // list restored to AVSL
S2->deleteList(); // list restored to AVSL

Example 4.1.1-1 SlipHeader

Slip User's Manual
SlipCells

• Deletion of lists is subject to deferred deletion of cells. When a list is deleted the expected
behavior is that the SlipSublist cells will not be recovered from the AVSL until they are
needed. When they are needed, the reference count field of the SlipHeader object referenced
is decremented. In this case, the getRefCount() method is called immediately after the list is
deleted with deleteList(). No demand is placed on the list cells and the SlipSublist reference
has not yet been recovered, hence, the list (S2) reference count is unaltered.

• setMark() quietly removes the most significant bit of the input mark. Only 15-bits are
allowed and the most significant bit is owned by SLIP. getMark() returns a 15-bit value.

• pop() removes the topmost list cell and dequeue() removes the bottom list cell. The return
values are a reference to the removed cell. Note that the cell is not deleted by SLIP.

• replaceBot() and replaceTop() apply a cell replace() to the bottom or top list cells
respectively. The object replaced is deleted to the AVSL.

• S1->getRefCount() and S2->getRefCount() return the current reference count in the list
header cell. This reference count is changed immediately when the SlipHeader list is deleted
with deleteList(), but changet is deferred for SlipSublist references until the SlipSublist cell
in the AVSL is needed. We have made the assumption the there are enough cells in the
AVSL so that for this example, the deleted SlipSublist references are not immediately
needed. Therefore, the reference counts will be the same reference counts as if all SlipSublist
objects were still active.

• replaceTop(“able”) shows the simplest form for creation of a SlipDatum cell containing a
string.

 4.1.2 Description List

A Description List is an optional association list which can be assigned to a SlipHeader object.
The association is a 2-tuple containing a key and a value, <key, value>. The semantics of a
search is that when a key is found, its associated value is returned.

Operations performed on the list are not reflected in the Descriptor List, except for list deletion,
deleteList(). If a flush() is executed, the list cells are deleted but the Descriptor List is
unchanged. This applies to all other operations including insertions, cell deletions, replacement,
and moves. The list and the Descriptor List it contains are independent.

This associative pair allows information to be stored concerning the list and avoid placing this
information in a list. The support methods provide the mechanism for inserting, searching,
modifying and deleting tuples.

Both the key and the value can be a SlipHeader. If the application is an insertion, then a
SlipSublist is created referencing the SlipHeader and inserted in place of the SlipHeader. If a

59

Slip User's Manual
SlipCells

search is made with a SlipHeader, then the '==' operator is used. Any search operations compare
the reference contained in a SlipSublist with the input SlipHeader.

To store a literal into the list as either key or value, it must be stored as a SlipDatum object.

All SlipCell objects stored into the Description List must be from the AVSL. Keys and values
can not be temporary or from the heap. They must be from the AVSL, and they will be retained
until the list containing the Descriptor List is deleted or until the Descriptor list is deleted or
flushed or the applications deletes the <key, value> pair..

No SLIP checks are made to ensure that there is a relationship between the key and value. They
can both be the same and either one or both can be list references (SlipSublists) or SlipDatum
objects. SLIP just doesn't care.

Before operations on a Descriptor List are begun, the list must be created with create_dList().
Interrogatories allow searching the list for a key, containsKey(), or a value, contains(), and for
retrieving the associated value for a key, get(). The Descriptor List can be deleted,
delete_dList(), flushed, flush_dList(), printed, printDlist(), and dumped, dumpDlist(). Tuples
can be deleted, deleteAttribute() and the list size can be found, size_dList(). These operations
do not affect the list containing the Descriptor List.

If a Descriptor List is deleted, delete_dList(), then a new list must be created, create_dList()
before any other operations on the list can be performed.

Values within a tuple must be deleted with deleteAttribute() and recreated with put() in order to
change the attribute value.

Calling a method uses ((SlipHeader&)X).method(). Interrogatories always succeed and return
true or false.

The available methods are given in Table 4.1.2-1 Descriptor List Methods.

Table 4.1.2-1 Descriptor List Methods

return ((SlipHeader&)X).method() Description

bool contains(SlipCell&) true if the input value is found.

bool constainsKey(SlipCell&) true if the input key is found.

SlipHeader& create_dList() Create a Description List for the SlipHeader.

bool deleteAttributes(SlipCell&) Delete a tuple for the input key.

60

Slip User's Manual
SlipCells

Table 4.1.2-1 Descriptor List Methods

return ((SlipHeader&)X).method() Description

SlipHeader& delete_dList() Delete a Description List. Equivalent to
deleteList().

SlipHeader& flush_dList() Empty all tuples in the Description List.

SlipCell& get(SlipCell&) Return an associated value for the input key or the
key.

void printDList() Pretty-print the Description List.

void dumpDList() Uglify the Description List in hexadecimal.

SlipCell& put(SlipCell&,SlipCell&) Put a <key, value> tuple into the Description List.

unsigned size_dList() Return the number of tuples in the Description List.

 4.2 SlipSublist

A SlipSublist object is a list cell which provides a reference to a SlipHeader object. This cell is
traversable using the Slip iterators, SlipReader and SlipSequencer, and with some additional
difficulty, by explicit application code.

A SlipSublist object allows lists to be referenced within lists. It provides the basic functionality
for constructing networks, acyclic graphs, and trees.

A SlipSublist object can not be created on the the heap or runtime stack. A SlipSublist object
not created from the AVSL can not be inserted into a list and can not be deleted. An attempt to
create a non-AVSL SlipSublist will be detected and cause application termination.

If a SlipSublist object is created using new then it must be deleted. If the object is put into a list
then when the list is deleted the object is deleted. If the object is not put into a list then the
application must delete the object before the scope containing the object is exited.

A SlipSublist object must be created referencing a list (SlipHeader object), as in new
SlipSublist(list reference) or SlipSublist(sublist reference) . At no time during processing can
the SlipHeader reference be null nor can it ever reference to an object which is not a list.
Operational errors which can create a violation to this condition are given below.

The valid constructors and destructors of a SlipSublist object are given in Table 4.2-1
SlipSublist Constructors and Destructors. Note that if the object is inserted into a list, then
deletion is implicit when the list is deleted.

61

file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/db/dc3/classslip_1_1_slip_header.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/db/d5d/classslip_1_1_slip_sequencer.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/d8/d2d/classslip_1_1_slip_reader.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/db/dc3/classslip_1_1_slip_header.html

Slip User's Manual
SlipCells

Table 4.2-1 SlipSublist Constructors and Destructors

result format Description

SlipSublist* new SlipSublist(SlipSublist&) Create an object from the AVSL.

SlipSublist* new SlipSublist(SlipHeader&) Create an object from the AVSL.

void delete (SlipSublist*)cell Return an object to the AVSL

If you delete the SlipSublist object, then the object is deleted and a deleteList() is executed
against the referenced header. If you delete the header instead of deleting the SlipSublist object,
and if the object is the only reference to the header, then the list will be returned to the AVSL and
the SlipSublist object will be out of synchrony. Any of the following conditions will (not may)
occur:

• The SlipSublist header reference is stale and references a cell in the AVSL.
• If the pointer is stale, then iterators (or iteration) will continue in the AVSL, or
• If the deleted header cell is used to create another SlipSublist or SlipDatum object

(operator new) then iterators (or iteration) will be to objects on another list.
• If the header cell from the AVSL is used to create another SlipHeader object (operator

new) then iterators (or iteration) is to cells on another list and this may be undetectable.
• Ill effects are latent and may not be 'seen' for some time after the initial deleteList().

The application is guaranteed inexplicable and hard to track errors.

In all other respects, a SlipSublist object is a SlipCell. It can be moved, inserted, and assigned
to, and replaced.

 4.2.1 SlipSublist – SlipHeader Methods

The SlipSublist provides access to all SlipHeader operations which are not in conflict with
SlipSublist operations. The conflict is defined as all operations which can have a legitimate
meaning for both SlipHeader objects and SlipSublist objects. In the case of a conflict, the
interpretation is that the operation applies to SlipSublist objects and not SlipHeader objects.
All replace(), print(), and dump() methods apply to the SlipSublist object and not the
referenced SlipHeader object.

The refCnt field of the header is decremented on execution of a deleteList(). If this count falls to
zero then the header and all list cells are restored to the AVSL. If the refCnt is not zero then at
some unknown future time when a delete (SlipSublist&)object or

62

file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/db/dc3/classslip_1_1_slip_header.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/db/dc3/classslip_1_1_slip_header.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/db/dc3/classslip_1_1_slip_header.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/d0/d02/classslip_1_1_slip_cell.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/db/dc3/classslip_1_1_slip_header.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/de/d45/classslip_1_1_slip_datum.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html

Slip User's Manual
SlipCells

(SlipHeader&)header.deleteList() the header and list cells will mysteriously disappear onto the
AVSL.

There is a subtle difference between a SlipHeader and a SlipSublist. A SlipHeader names a list
and a SlipSublist refers to that name. A SlipHeader is a member of it's own list but retains its
identity and can not be a member of any other list. A SlipSublist contains a reference to a list. A
SlipSublist allows a list to be a member of other lists.

All lists must be acyclic. This means that in any path starting at a SlipHeader object there can be
no SlipSublist referring to this header. If a lists is not acyclic then the list can not be deleted and
restored to the AVSL. All memory included in the top level list and all sublists (the complete
graph with initial node of the given object) will be lost for 40 years in the desert.

The SlipHeader methods directly usable by a SlipSublist object are given below. Details on the
methods are given in the SlipHeader section and are not repeated here.

((SlipSublist&)X).method()

dequeue() Removal of the bottom cell from a list

dumpList() Ugly hexadecimal of a list and all sublists.

enqueue() Insert a cell to the bottom of a list.

flush() Empty a list.

getBot() Peek at the last cell in a list.

getTop() Peek at the first cell in a list.

getMark() Look at the application mark of a list.

getRefCount() Look at the list membership count.

isEmpty() true if the list is empty

isEqual() true if two list are structurally identical.

pop() Remove the top cell in a list.

printList() Pretty-print the list.

push() Insert a cell to the top of a list.

putMark() Set an application mark into the list.

replaceTop() Replace the top cell of a list.

replaceBot() Replace the bottom cell of a list.

63

file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/db/dc3/classslip_1_1_slip_header.html

Slip User's Manual
SlipCells

size() Return the number of cells in the list top.

SplitLeft() Create a new list from the list top to the current cell.

SplitRight() Create a new list from the current cell to the list bottom.

The Descriptor List methods directly usable by a SlipSublist object are given below. Details on
the methods are given in the SlipHeader section and are not repeated here.

((SlipSublist&)X).method()

constains() true if the input value is in the Descriptor List.

containsKey() true if the input key is in the Descriptor List.

create_dList() Creates a new Descriptor List.

deleteAttributes() Deletes a <key, value> attribute.

delete_dList() Deletes a Descriptor List.

dumpDlist() Hexadecimal dump of a Descriptor List

flush_dList() Remove all <key, value> pairs from the list.

get() Return the value of a <key, value> pair.

isDList() true if the list has a Descriptor List.

printDlist() Pretty-print the Descriptor List.

put() Put a <key, value> pair into a Descriptor List.

size_dList() Number of <key, value> pairs in the Descriptor List.

 4.2.2 SlipSublist Methods

SlipSublist supports a limited number unique methods. Assignment is supported if the RHS is
either a SlipSublist or a SlipHeader, and causes the referenced SlipHeader in the current
SlipSublist object to be deleted and the new SlipHeader referenced in either another SlipSublist
object or a SlipHeader to replace it after the SlipHeader reference count is incremented. All
replace operations cause the existing SlipHeader referenced in the SlipSublist object to be
deleted and replaced by a new SlipDatum object or SlipHeader reference, with the reference
count of the new list incremented.

64

Slip User's Manual
SlipCells

Equality checks for exact equality of SlipHeader objects reference the current referenced list. If
the current SlipSublist list reference equals the RHS SlipHeader reference then true is returned.
In all other cases, false is returned. dump() and toString() return internal formats for the
SlipSublist object, and getHeader() returns the SlipHeader reference. And as Walter Lanz used
to say, “That's all folks”.

Table 3.2-1 Replace Methods shows the result of replacing a SlipSublist object.

Table 4.2.2-1 Assignment shows the results of assignment, (SlipSublist&)X = RHS, where RHS
is any of the recognized SLIP types.

Table 4.2.2-1 Assignment

return RHS Description

SlipSublist& SlipHeader& Delete the existing list, increment the refcount of the new list & use.

SlipSublist& SlipSublist& Delete the existing list, increment the refcount of the new list & use.

SlipSublist& SlipDatum illegal

SlipSublist& literal Illegal (DataType = bool, discrete data, string application data)

Table 4.2.2-2 Relational Operators shows the results of using == and !=. All other relational
operators yield false.

Table 4.2.2-2 Relational Operators

return SlipSublist& RHS Description

bool X == (SlipHeader&)Y Comparison legal

bool X == (SlipSublist&)Y Comparison legal

false X == (SlipDatum&)Y Comparison illegal

false X == literal Literal values are not legal

bool X != (SlipHeader&)Y Comparison legal

bool X != (SlipSublist&)Y Comparison legal

false X != (SlipDatum&)Y Comparison illegal

false X != literal Literal values are not legal

65

Slip User's Manual
SlipCells

Table 4.2.2-3 Miscellaneous Methods shows the miscellaneous operations and their result.

Table 4.2.2-3 Miscellaneous Methods

return method() Description

string dump() Internal representation of SlipSublist object.

SlipSublist& getHeader() Returns the list referenced in the SlipSublist object.

string toString() Internal representation of SlipSublist object.

 4.3 SlipDatum

The SlipDatum cells are SlipCells and the objects containing application defined values. The
cells participate is cellish activities (insert(), delete, replace()) and values participate in
arithmetic, bit, cast, logical, and unary operations.

SlipDatum cells can be created on the runtime stack or from the AVSL. Runtime stack objects
can not be inserted in a list. In all other respects, runtime objects are a SlipDatum object.

Section 2 Data defines all of the value related operations and defines data types and value ranges.
Section 3 Common Operations describes the cell operations that SlipDatum cells can participate
in.

There is a special SlipDatum value for User Data Types defined in Section 4.4 Application Data
Types, This allows arbitrary application defined data to be handled in SLIP.

Assignment treats the LHS data type as polymorphic and casts the LHS the the RHS, as in
Example 4.3-1 Assignment:

66

SlipDatun X((bool)false);
SlipDatum Y = (bool)true;
SlipDatum Z = (long)15;
SlipDatum a = (double)3.5
X = Y; // true
X = Z; // true = (bool)Z
Z = a; // 3.5
z = Z; // 15

Example 4.3-1 Assignment

Slip User's Manual
SlipCells

Some noteworthy methods are given below:

(SlipDatum&)X.method()

string dump() Return a string with the internal rendition of the cell.

bool isData() Is this a SlipDatum cell.

bool isDiscrete() Is this a SlipDatum cell with a discrete number.

bool isNumber() Is this a SlipDatum cell with a number.

bool isPtr() Is the cell a application defined SlipDatum cell.

bool isReal() Is this a SlipDatum cell with a real.

bool isString() Is this a SlipDatum cell for a string.

string toString() Return a string with the formatted value in the cell.

Some simple programming examples using SlipDatum object is given in Example 4.3-2:

The example is simple by design. It does the following:

67

 1: SlipHeader* polyNomial = new SlipHeader();
 2: SlipSequencer iter(polyNomial);
 3: SlipDatum X = (double)1.0;
 4: SlipDatum Y = (double)2.0;
 5: polyNomial.push(Y);
 6: polyNomial.push(X);

 7: double hypotenuse = sqrt(X*X + Y*Y);

 8: double value = 0;

 9: iter.advanceLWR();
10: do while(!iter.isHeader()) {
11: value += iter.currentCell();
12: iter.advanceLWR();
13: };

14: double sqrt(SlipDatum& X) {
15: return ::sqrt((double)X);
16: };

17: polynomially();

Example 4.3-2 SlipDatum

Slip User's Manual
SlipCells

line # Description

1 Create a list named polyNomial.

2 Create a simple iterator for the list. The iterator initially references the list header.

3 - 4 Create two (double) SlipDatum objects.

5 - 6 Insert a copy of X & Y into the list. The list will look like (X Y). A copy is created
because X & Y are on the runtime stack and will be deleted when the current scope is
exited. Lists require persistent data, and this is achieved by creating a SlipDatum object
and inserting the value of the runtime SlipDatum data type and value into the newly
created cell.

7 Calculate the hypotenuse of a right triangle with value X and Y. Note that C++ sqrt must
be overridden because it doesn't understand SlipDatum objects.

9 – 13 Treat the list as a polynomial and calculate ∑aixi where ai are the coefficients in the array
and xi are assumed to be (double)1.0. This calculation will only work if all objects are
SlipDatum cells.

9 The iterator initially references the list header. Advance to the first cell in the list.

10 If the next cell to be evaluated is the list header, we are done.

11 Add aixi to the variable value.

12 Iterate to the next cell in the list.

14 - 16 Override the square root function. The 'new' square root function casts the input
SlipDatum value to a double and returns its square root.

17 The list must be deleted (if it is no longer needed). Since this is the only reference to the
list, when the list is deleted then all of the list contents will also be deleted and restored to
the AVSL. The actual deletion of the list is not immediate. Outstanding pointers and
references to the list header and list cells are undetectably stale.

 4.4 Application Data Types

An Application Data object is handled in an identical fashion as any other SlipDatum object. It
participates in list operations and can support arithmetic, boolean, bit, assignment, logical,
casting, and unary operations. List operations are supported as a part of the SLIP interface to a
SlipDatum cell. Computational operations are associated with the Application Data object when
the application SlipDatum cell is created. The SlipDatum object is a container for the
Application Data object.

68

Slip User's Manual
SlipCells

Definition of Application Data content and behavior is under the control of the application. The
application must derive a class from SlipPointer and expand the SlipPointer defined behavior in
an application specific, way including additional methods and data items. This has no effect of
SLIP operations. The SlipPointer class is an ADT and can not be used directly.

SLIP assumes that the User Data is persistent. When the data is placed into a list, it is assumed
that the data will last until the list is deleted. The application must be aware of this and not
perform operations to invalidate this. The data must be present as long as the SlipDatum cell
containing the data is live. Application Data can not be placed on the stack. It must come from
either the heap or from an application static area of memory, or from an application defined
space allocator. If the Application Data is constructed on the stack, when the current scope is
exited the SlipDatum object containing the Application Data will have a stale pointer and who
knows what damage will be done (only the Shadow does).

Application Data Type is distinguished from all other objects in SLIP in that memory utilization
is under application control and not under SLIP control. The application is responsible for the
management of space required to hold the data, for acquiring space and deleting space.

There are two user data types, strings and Application Data Types. The string semantics are
known and defaults are provided. Application Data Type semantics are unknown and the
Application is responsible for deriving a subclass from the SlipPointer and SlipPtrOp class.

 The SlipPtrOp.h class allows the application to override default arithmetic, assignment, bit,
boolean, logical and unary operations. This will be covered in the Application Data Type section
of this document. The SlipPtrOp object is referenced during these operations allowing an
application type participation in operations in a transparent fashion.

For Application Data Types SLIP interfaced memory management is solely contained in the
SlipPointer Abstract Data Type (ADT) derived class. The interface contains methods equivalent
to new, delete, and const copying. These operations are used by SLIP when data objects are
created, deleted, and copied. Whereas the defaults in the SlipPtrOp class can be used without
change, SlipPointer must be inherited and functionality for virtual methods provided. There is no
default.

The default constructors/destructors of the base class have very little functionality. The
constructor saves the Application Data Type name supplied or defaults to “nullName” and the
destructor provides decoration, it has no body. This reflects the lack of assumed knowledge about
the characteristics of the data at the base class level. Multiple different Application Data Types
should have different, unique, names.

69

Slip User's Manual
SlipCells

The supplied constructors and destructors are given in Table 4.4-1 SlipPointer
Constructors/Destructors.

Table 4.4-1 SlipPointer Constructors/Destructors

method() Description

SlipPointer(const string* = “nullName”) Save application data name

~SlipPointer() Does nothing

There are no defaults for the methods in Table 4.4-2 Application Data Type Operations. These
methods must be supplied by the application.

Table 4.4-2 Application Data Type Operations

return (SlipPointer&)X.method() Description

SlipPointer* copy() Return a copy of the current object.

string dump() Internal description of application data

string* getName() Name of the application data

typedef† getParse() Returns a pointer to the parse method

SlipDatum& parse(SlipHeader*) Factory to create a SlipDatum object

void remove() Destructor

string toString() Pretty-print application data

string write() Return a string suitable for output.

† typedef SlipDatum& (*Parse)(SlipHeader& head);

• copy(): SLIP copies values (and types) during various operations. The application must
provide an application specific method to perform this copy and return a pointer to the
results. Space needed to create application data is an application responsibility and can not
come from the SLIP AVSL. Some hints:

• Constant: For persistent application data in which the application maintains exclusive
control over the deletion of the object and for ensuring that when deletion occurs there
are no outstanding instances of the object stored into any SlipDatum cell, it is

70

Slip User's Manual
SlipCells

convenient to return a pointer to a single instance of the object. That is, the object is
never explicitly copied.

• Non-Constant:; For data in which the application relinquishes deletion responsibilities to
SLIP, i.e., when SLIP deletes a SlipDatum object then it is desired that the Application
Data object be deleted, then the copy method should create a new object and return a
pointer to it.

Note that the copy() and the remove() methods are linked Remove() semantics depends on
the decision made for copy.

• dump(): Application specific data needed for diagnostic purposes. This method is called by
SLIP whenever diagnostic information is required. These instances occur when a SlipDatum
cell is dumped, either as part of a list dump ((SlipHeader&)X.dumpList()) or when an
individual cell is dumped ((SlipDatum&)X.dump(), (SlipReader&)X.dump(),
(SlipSequencer&)X.dump()).

• getParse(): Returns a pointer to the Application Data parse method. When the User Data
class is registered prior to input, the getParse() method is used to store a pointer to the the
parse() method. Each time an application data definition is found in the input, the parse()
method is called.

• getName(): Returns the application supplied data name or the default name (“nullName”).
The name field is an invariant property of the base class inherited by all derived classes. If
no name is provided, then the default “nullName” is supplied.

• parse(SlipHeader&): Converts a list into an internal format needed for a Application Data
object. This method is registered prior to input processing (using getParse()) and used
during input processing to convert input data into a form needed for the Application Data
object. The method can be static or dynamic, but if dynamic the object registered for input
must be retained until after input is complete. This method should be a factory which given a
list returns a SlipDatum Application Data cell. That is, input to the method is passed the
SlipHeader of a (possibly empty) list.

It is the responsibility of the parse() method to delete (or use) the input list. If the input list
is converted to some internal form and not further used, the parse() method must delete it. If
the input list is put on another list as a sublist, then the input list must be deleted (see the
SlipHeader Section). If a pointer or reference to the input list is used then the input list must
not be deleted.

• remove(): Application specific delete synonym. remove() deletes the data object. The
semantics of delete depend on the decision made for copy, and management of space is the
responsibility of the application. Space can not be recovered to the SLIP AVSL unless it is a

71

Slip User's Manual
SlipCells

SLIP list. The process of deletion, creation, and copy include the name of the Application
Data Class. Some hints:

• Constant: If the data is persistent and copy() returns a pointer to the single and only
instance of the data, then remove() should do nothing or should provide a mechanism to
detect the last instance of use and delete the data at that time.

• Non-Constant: If the data persistency is to be controlled by the longevity of its
SlipDatum container, then remove() must delete the data. The application provided
copy() method must create a new copy of the the application data on each instance that
SLIP requires a copy. This means that each SlipDatum object containing the 'same'
SlipPointer derived object actually contains a unique instance of the object.

• toString(): Pretty-printed string representing the stored data. The representational format
shows an application specific meaning. The output is not meant to be input. It only serves to
allow the Application Data Type to be attractively rendered.

• write(): The format is output by SLIP whenever a list is output (printList()) for the
application explicitly invokes this function with (SlipDatum&)X.toString(). The output must
be an ASCII formatted list such as '(1 2 (3.0 “apple”) true)', where parse() can reassemble
the list into appropriate application data.

The SlipPointer ADT is given in Figure 4.4-1: Application Data Type Base Class

 4.4.1 Strings

There are two types of strings in SLIP Application Data Types recognized, both derived from
SlipPointer (see Figure 4.4.1-1: SlilpString Inheritance).

72

 class SlipPointer {
 public:
 SlipPointer(const string* name = &nullName);
 virtual ~SlipPointer();
 virtual SlipPointer* copy() = 0;
 virtual string dump() const = 0;
 virtual void remove() const = 0;
 virtual string toString() const = 0;
 const string* const getName() const;

virtual string write() const = 0;
};

Figure 4.4-1: Application Data Type Base Class

Slip User's Manual
SlipCells

SlipStringConst is a predefined data type representing constant strings. From the application
perspective, the application wants to control the deletion of the indicated string, and/or the
application wants each SlipDatum cell referencing the string to reference the same string. Any
modification to the string is seen in all SlipDatum cells. The default copy() method copies a
reference to the same string. The default remove() method does nothing.

The SlipStringNonConst is a predefined data type representing strings that the application wants
to relinquish memory control to SLIP. In this case, copy() creates a new instance of the string and
remove() deletes the string. The lifetime of the input string is the lifetime of the containing
SlipDatum cell.

In both cases the reference to 'const' refers to the treatment of the string within SLIP. For
SlipStringConst there is one instance of the string in all SlipDatum copies, and a copy of the
string in each SlipDatum instance for SlipStringNonConst object.

Creation of an instance of a SLIP string requires that the application provides information as to
what type of Application Data Type is required, SlipStringConst or SlipStringNonConst. This
can occur in replace, insert, and SlipDatum construction. The argument list in all these cases is
“const string&, bool constFlag=false”, where false represents a SlipStringNonConst and true
represents a SlipStringConst. The default is to a SlipStringNonConst. The list of methods and
constructors is given in Table 4.4.1-1 Application Data Type string Creation.

Table 4.4.1-1 Application Data Type string Creation

return method() Description

SlipDatum* SlipDatum(const string&, bool constFlag=false) Constructor

SlipDatum* SlipDatum(const string*, bool constFlag=false) Constructor

73

Figure 4.4.1-1: SlilpString Inheritance

SlipPointer

SlipStringConst SlipStringNonConst

Slip User's Manual
SlipCells

Table 4.4.1-1 Application Data Type string Creation

return method() Description

SlipDatum& insLeft(const string&, bool constFlag=false) New SlipDatum returned

SlipDatum& insLeft(const string*, bool constFlag=false) New SlipDatum returned

SlipDatum& insRight(const string&, bool constFlag=false) New SlipDatum returned

SlipDatum& insRight(const string*, bool constFlag=false) New SlipDatum returned

SlipDatum& replace(const string&, bool constFlag=false) New SlipDatum returned

SlipDatum& replace(const string*, bool constFlag=false) New SlipDatum returned

Assignment assumes that the RHS string requires a SlipStringNonConst Application Data Type.
That is:

SlipDatum X = (string&)Y; and
SlipDatum X = (string*)Y;

create new SlipDatum objects with a data type of string and a value of SlipStringNonConst.
Note that the examples show that a SlipDatum object an b e created on the runtime stack.

As a SlipDatum object, all the SlipDatum operations are available to strings, in addition, logical
comparison between strings are supported.

 4.4.2 Application Data Type

The Application Data Type is an extension of the capabilities provided for string types.
Application data has the ability to enjoy any application defined data structure and to optionally
include the application data in arithmetic, compound assignment, bit, boolean, cast, logical, and
unary operations, that is, any operation that the internal data types can participate in.

Application data can be conceptualized as the SlipDatum object being the container for both
application operations and application data, as illustrated in Figure 4.4.2-1: Application
Framework. The data (SlipPointer class object) is required, the operations (SlipPtrOp class) is
not. The SlipPointer class is an ADT and must be the base class for the application data class.
The SlipPtrOp class is not an ADT and all operations are defaulted to fail.

74

Slip User's Manual
SlipCells

A copy operation is performed in two steps. In the first step SLIP copies the class operations (see
Table 4.4.2-1 Application Data Object Creation), in the second step the application provided
copy() method is called. The application must provide the contract methods given in SlipPointer
and must understand their impact. copy() takes immediate effect at the time it is called. When
SLIP requires a copy of the application data, the application provided method is expected to
immediately deliver the copy for use, and to be able, at that time, to do any immediate activity
required by the application.

At the time that a list or SlipDatum object is deleted remove() is not called. Removal is deferred
until the SlipDatum cell containing the application data is needed, and at this time, remove() is
executed. This may be at some distant time during processing or never. Consider an AVSL with
9,999 cells and a single SlipDatum object with application data. When the SlipDatum object is
deleted, the AVSL will contain 10,000 cells. remove() will be executed after it's 10,000
predecessor cells have been exhausted. Notifications depending on immediate notification when
a cell is placed in the AVSL will not work properly.

Once remove() is executed, the application is responsible for recovery of application data. SLIP
does not recover this data and the data is never put into the AVSL..

The semantics of copy() and remove() are application defined. If the rationale used for strings
applies, the copy() and remove() work in tandem. If the application requires one copy of the
application data then copy() will return a reference to this copy and remove() will do nothing. If
the application allows multiple copies to exist, each one independent of any other, then copy()
will create a new object with the data, and remove() will cause the application to delete the data.

75

Figure 4.4.2-1: Application Framework

SlipDatum(PTR, OP)

SlipPointer Class SlipPtrOp Class

Application Class Application Op Class

Slip User's Manual
SlipCells

It is important to note that dump() provides an internal representation of the SlipDatum cell and
then appends the application information. The application data provided should be specific and
meaningful to applications, and should be devoid of SLIP-centric data.

The application implementation of toString() should return a pretty-printed version of the
application data. There's no point in making it look ugly. SLIP has no preconditions of format.

If the application has several different Application Data Types in use, then getName() serves to
distinguish between them at the application level. There is no requirement that this field be used
for this purpose, and if not, the default value of “nullName” is returned. However, if not used,
then each data dump will have “nullName” given as the SlipDatum data type for each defaulted
Application Data Types and input of a list will all default to the application supplied “nullName”
parse() method. If one size doesn't fit all, supply a unique string.

SLIP provides the header file, SlipPtrOp.h, as the base class for use in supporting Application
Data Type operations. SLIP treats operations as class properties shared by all objects of the same
class. For example, if the data type of two SlipDatum cells is double, then the two SlipDatum
cells perform the same operations in the same way and refer to the same operator instantiation. It
is recommended that each Application Data Type have their own static objects with operations
defined. SlipDatum cells with the same data type will reference the same operator properties.

An association between Application Data Type and Application Data Type operations is made
during object creation (see Table 4.4.2-1 Application Data Object Creation). The default is to
disallow all operations except comparison and assignment. SLIP retains the association after
object creation in all SLIP operations.

Table 4.4.2-1 Application Data Object Creation

return method Description

SlipDatum* SlipDatum(const PTR, void*
operation=null)

Constructor

SlipDatum& insLeft(const PTR, void* operation=null) New SlipDatum returned

SlipDatum& insRight(const PTR, void* operation=null) New SlipDatum returned

SlipDatum& replace(const PTR, void* operation=null) New SlipDatum returned

The SLIP framework supports both X op Y and Y op X, where X is a SlipDatum object and Y is
a literal, C++ variable, or SlipDatum object. Where the operator, op, is commutative, that is, X
op Y will yield the same result as Y op X, SLIP provides an interface compatible with the

76

Slip User's Manual
SlipCells

applications understanding of operations within C++. Where the operations are non-
commutative, X op Y and Y op X yield different values, the application needs to provide bodies
for special methods within SlipPtrOp.h (see Table 4.4.2-2 Anti-commutative Methods).

As an example:

X + Y and Y + X are commutative and yield the same value.
X – Y and Y – X are not commutative and will yield different values

Table 4.4.2-2 Anti-commutative Methods

result method operation

SlipDatum subOP(const long, const SlipDatum&) (long)Y - X

SlipDatum subUOP(const unsigned long, const
SlipDatum&)

(unsigned long)Y - X

SlipDatum subDOP(const double, const SlipDatum&) (double)Y - X

SlipDatum divOP(const long, const SlipDatum&) (long)Y / X

SlipDatum divUOP(const unsigned long, const SlipDatum&) (unsigned long)Y / X

SlipDatum divDOP(const double, const SlipDatum&) (double)Y / X

SlipDatum modOP(const long, const SlipDatum&) (long)Y % X

SlipDatum modUOP(const unsigned long, const
SlipDatum&)

(unsigned long)Y % X

long shlOP(const long, const SlipDatum&) (long)Y << X

long shrOP(const long, const SlipDatum&) (long)Y ->> X

 5 .0 Iterators

There are two types of iterators in SLIP, a structured iterator and a linear iterator. The structured
iterator provides a means to traverse sublists (lists contained with lists) and a memory to enable
return to a containing list. The linear iterator provides a means to traverse sublists but no means
to return to a containing list.

The iterators provide a consistent view of a list and cells within a list. If a cell is deleted under
iterator control, then the iterator uses the preceding cell as the object. If a cell is deleted outside

77

Slip User's Manual
Iterators

of iterator control, then the iterator contains a stale reference. Under iterator control there is a
consistent view of list access. The 'next' cell is always preserved under deletion.

The watchword is that the iterators attempt to provide a consistent view of a list under change.

Iterators are not synchronized. Although each iterator provides a known and consistent
interaction with a list under change, this view is supported only for the current iterator and not
for multiple iterators in the same list. So although iterators provide quite a bit of support, some
native wit is also required.

Iterator functionality is imposed by design. The original SLIP(1)(3) used different method names
for a reader and a sequencer, and the sequencer was could not descend into a sublist. These
restrictions have been removed. Both reader and sequencer use the same method names to
perform the same logical functions, and sequencers can enter sublists as readily as readers
(although there doesn't seem to be a good rationale for not using a reader to enter a sublist.)

One other notable difference between the initial SLIP design and the current one is that the
current implementation supports consistency and the original SLIP required the application to
implement consistency. Operations taken within a list, such as deletion of the current cell, which
cause the reader or sequencer to contain a stale pointer are avoided by performing these
operations under iterator control.

Common operations are presented below. Of note is that SLIP operations which can be
interpreted as either applying to a list or a cell are always interpreted as applying to a list. In the
sequencer, there are no list operations supported as part of the iterator. The application is
required to know that the iterator references a list in order to do list operations. In a reader
unambiguous list operations are supported. Therefore, list centric operations are not common.

Iteration is called advance. Each advance method returns a reference to itself after execution,
updated with the results of the advance. In this case, a SlipReader returns a reference to an
updated SlipReader and a SlipSequencer returns a reference to an updated SlipSequencer.

There are two types of advance:

 Linear (L) search in the current list only.
 Structural (S) search in the current list and any sublists.

There are three attributes that can be used in an iteration:

 Element (E) advance until a SlipDatum cell is found.

78

Slip User's Manual
Iterators

 Name (N) advance until a SlipSublist cell is found.
 Word (W) advance to the next cell.

There are two directional attributes:

 Right (R) advance to the following list cell.
 Left (L) advance to the preceding list cell.

Advance on a word is an operation which always terminates after a single step is executed.
Advance on an element or a name is a search operation which terminates when either the given
item is found or when a list header (SlipHeader object) is found. If the search is linear then on
failure a search will terminate at the list header (SlipHeader object) of the current list. If the
search is structural then on failure the search will terminate at the list header of the topmost list
for a reader and at the bottommost list for a sequencer.

On structural advances a depth first search is performed. Each time that a sublist (name) is
traversed, the subordinate list is entered. For a sequencer the subordinate list never returns to its
parent list. For a reader, a return to the parent list is made whenever a search or advance
continues through the list header. Note that an word advance is not a search. It will always stop at
a list header before the next advance.

The advance functions are given in Table 5-1.

Table 5-1 Advance Methods

method() Description

advanceLER() Advance Linear Element Right. Search for a SlipDatum cell in the current list

advanceLNR() Advance Linear Name Right. Search for a SlipSublist cell in the current list.

advanceLWR() Advance Linear Word Right. Single step to the next cell.

advanceLEL() Advance Linear Element Left. Search for a SlipDatum cell in the current list

advanceLNL() Advance Linear Name Left. Search for a SlipSublist cell in the current list.

advanceLWL() Advance Linear Word Left. Single step to the next cell.

advanceSER() Advance Structural Element Right. Search for a SlipDatum cell in any list.

advanceSNR() Advance Structural Name Right. Search for a SlipSublist cell in any list.

advanceSWR() Advance Structural Word Right. Single step to the next cell.

advanceSEL() Advance Structural Element Left. Search for a SlipDatum cell in the any list.

79

Slip User's Manual
Iterators

Table 5-1 Advance Methods

method() Description

advanceSNL() Advance Structural Name Left. Search for a SlipSublist cell in any list.

advanceSWL() Advance Structural Word Left. Single step to the next cell.

Cell based methods are supported by both iterators. These include the insert (insRight() and
insLeft()) and the replace methods, assignment and logical operations. The miscellaneous
toString() and dump() methods output information on the current SlipCell and not the iterators.
A list of all common methods are given in Table 2.3-1 Assignment Operations, Table 3.2-1
Replace Methods and Table 3.3-1 Insert Methods. Table 3.4-1 Move Methods applies to
moveLeft() and moveRight(), and Table 3.6-1 Miscellaneous Methods applies to dump(),
getClassType() and toString(). The format for execution of methods is X.method(), assignments
are given by X = value, and relational operations by X == value, where X is either a SlipReader
or SlipSequencer.

The return types for the incorporated methods from other sections is the same as defined in the
referenced sections. For moveListRight() and moveListLeft(), the new methods presented in
Table 5-2 Miscellaneous Iterator Methods have an iterator as a return type.

The interrogatories supported in Table 3.1-1 Interrogatories along with the property getName()
described in Table 3.6-1 Miscellaneous Methods. Interrogatories guaranteed to be true
(isAVSL()) or guaranteed to be untrue (isDeleted(), isTemp(), isUnlinked()) are not defined.

In addition, each iterator supports all the inserts, moves, move lists, and replaces given in Table
3.2-1 Replace Methods, Table 3.3-1 Insert Methods, Table 3.4-1 Move Methods, Table 4.1-1
SlipHeader Constructors and Destructors, Table 4.4.1-1 Application Data Type string Creation,
Table 4.4.2-1 Application Data Object Creation. The format and returns are the same as defined.
Invocation using the current iterator, such as (SlipReader&)X.method() or
(SlipSequencer&)X.method(). The current cell of the iterator is returned and is unchanged.

The remaining common and unique methods are given in Table 5-2. Either iterator, I =
{SlipReader, SlipSequencer}, can be used in I.method() or returned as I&.

Table 5-2 Miscellaneous Iterator Methods

return I.method() Description

SlipCell& currentCell() Return a reference to the list cell currently accessed

80

Slip User's Manual
Iterators

Table 5-2 Miscellaneous Iterator Methods

return I.method() Description

by the iterator. The current cell can be a header,
sublist reference, or datum cell.

I& deleteCell() Delete the current cell and fixup the sequencer.
After the delete operation, the sequencer will
reference the list cell preceeding the deleted cell.
This operation is equivalent to performing an
advanceLWL() and then deleting the next cell.

SlipCell& insLeft(SlipReader&) A copy of the current cell referenced in the reader is
inserted. Return a reference to the inserted cell.

SlipCell& insLeft(SlipSequencer&) A copy of the current cell referenced in the
sequencer is inserted. Return a reference to the
inserted cell.

SlipCell& insRight(SlipReader&) A copy of the current cell referenced in the reader is
inserted. Return a reference to the inserted cell.

SlipCell& insRight(SlipSequencer&) A copy of the current cell referenced in the
sequencer is inserted. Return a reference to the
inserted cell.

SlipCell& replace(SlipReader&) The current cell referenced in the reader replaces
the current cell referenced in I. Return a reference
to the new cell.

SlipCell& moveLeft(SlipReader&) Move the reader current cell to the left of the
iterator current cell. Return the current cell.

• If the input current cell is a list then the list
body is moved to the left of the iterator
current cell and the input iterator references
an empty list.

• Otherwise the input current cell is moved
and the input iterator references its
predecessor cell.

SlipCell& moveLeft(SlipSequencer&) Move the reader current cell to the left of the
iterator current cell. Return the current cell.

• If the input current cell is a list then the list
body is moved to the left of the iterator
current cell and the input iterator references

81

Slip User's Manual
Iterators

Table 5-2 Miscellaneous Iterator Methods

return I.method() Description

an empty list.
• Otherwise the input current cell is moved

and the input iterator references its
predecessor cell.

I& moveListLeft(SlipReader&) Move the reader current list to the left of the iterator
current cell. Return the current cell.

• The list body is moved to the left of the
iterator current cell and the reader current
list and current cell reference an empty list.

I& moveListLeft(SlipSequencer&) Move the sequencer list to the left of the iterator
current cell. Return the current cell.

• If the input current cell is a list list body is
moved to the left of the iterator current cell
and the reader current list and current cell
reference an empty list.

• Otherwise it is an error,

I& moveListRight(SlipReader&) Move the reader current list to the right of the
iterator current cell. Return the current cell.

• The list body is moved to the left of the
iterator current cell and the reader current
list and current cell reference an empty list.

I& moveListRight(SlipSequencer&) Move the sequencer list to the right of the iterator
current cell. Return the current cell.

• If the input current cell is a list list body is
moved to the left of the iterator current cell
and the reader current list and current cell
reference an empty list.

• Otherwise it is an error,

SlipCell& moveRight(SlipReader&) Move the reader current cell to the right of the
iterator current cell. Return the current cell.

• If the input current cell is a list then the list
body is moved to the right of the iterator
current cell and the input iterator references
an empty list.

• Otherwise the input current cell is moved

82

Slip User's Manual
Iterators

Table 5-2 Miscellaneous Iterator Methods

return I.method() Description

and the input iterator references its
predecessor cell.

SlipCell& moveRight(SlipSequencer&) Move the reader current cell to the right of the
iterator current cell. Return the current cell.

• If the input current cell is a list then the list
body is moved to the right of the iterator
current cell and the input iterator references
an empty list.

• Otherwise the input current cell is moved
and the input iterator references its
predecessor cell.

SlipCell& replace(SlipSequencer&) The current cell referenced in the sequencer
replaces the current cell referenced in I. Return a
reference to the new cell.

SlipCell& unlink() The current cell is unlinked from the list and the
iterator performs an advanceLWL() to reference its
preceding cell. Return a reference to the unlinked
cell.

An example of usage is given in Example 5-1.

83

Slip User's Manual
Iterators

The output from Example 5.1 is:

2 += 2
6 += 4
12 += 6
R1 is a number LONG
S1 is a header
4 10 18

An extended example of the iterators for list = (a b (c (d) e) f) is given.

The notation used is D(value) represents a SlipDatum value, H() represents a SlipHeader
defined list, and N(H()) represents a SlipSublist reference, N() to the list H(). We transform the
above list to the following linear relation:

 list = L1(D(a) D(b) N(L2(D(c) N(L3(D(d))) D(e)) D(f))

84

SlipHeader H1 = new SlipHeader();
SlipHeader H2 = new SlipHeader();
 H1.enqueue((long)0); // H1 = (0)
 H1.enqueue((long)2); // H1 = (0 2)
 H1.enqueue(H2); // H1 = (0 2 ())
 H1.enqueue((long)4); // H1 = (0 2 () 4)
 H1.enqueue((long)6); // H1 = (0 2 () 4 6)

SlipSequencer S1 = new SlipSequencer(H1);
SlipReader R1 = new SlipReader(R1);
 R1.advanceLER(); // data = 0
 S1.advanceLER(); // data = 0
 S1.advanceLER(); // data = 2

 do { // R1 += S1
 R1.currentCell() += S1.currentCell();
 cout << R1.toString() << “ += “ << S1.toString() <<
endl;
 S1 = R1.currentCell() + S1.currentCell()
 S1.advanceLER();
 } while(!S1.isHeader())

if (R1.isNumber()) cout << “R1 is a number ” R1.getName()
 << endl;
if (S1.isHeader()) cout << “S1 is a header” << endl;
while(!(S1.advanceLER()).isHeader())
 cout << S1.currentCell().toString() << ' ';
cout << endl;

Example 5-1 Iterator Example

file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/da/d1c/classslip_1_1_slip_sublist.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/db/dc3/classslip_1_1_slip_header.html
file:///C:/home/skidmarks/Projects/SLIP/DOC/ReferenceManual/ReferenceManual/de/d45/classslip_1_1_slip_datum.html

Slip User's Manual
Iterators

The spatial relation representing this list is:

 L1(D(a) D(b) N() D(f))
 |
 |
 o L2(D(c) N() D(e))
 |
 |
 o L3(D(d))

The following examples show the effect of advances for each iterator over the list. For linear
advances the cell referenced is the same for the reader and sequencer. For structural advances
they are very different.

In our example there are two sublists, N(L2) and N(L3) representing the sublist cells referencing
lists L2 and L3 respectively. Lists are shown as L1, L2 or L3, and data cells are shown as D().

In the examples, the reader maintains a reference to the list, List, and its current cell, Cell, and
the nesting depth, Depth. The sequencer contains a reference to its current cell, Cell.

All iterators start at L1.

Method Reader Sequencer

advanceLER List Cell Depth Cell

advanceLER L1 D(a) 0 D(a)

advanceLER L1 D(b) 0 D(b)

advanceLER L1 D(f) 0 D(f)

advanceLER L1 L1 0 L1

Example 5-2 advanceLER

85

Slip User's Manual
Iterators

Method Reader Sequencer

advanceLEL List Cell Depth Cell

advanceLEL L1 D(f) 0 D(f)

advanceLEL L1 D(b) 0 D(b)

advanceLEL L1 D(a) 0 D(a)

advanceLEL L1 L1 0 L1

Example 5-3 advanceLEL

Method Reader Sequencer

advanceLNR List Cell Depth Cell

advanceLNR L1 N(L2) 0 N(L2)

advanceLNR L1 L1 0 L1

Example 5-4 advanceLNR

Method Reader Sequencer

advanceLNL List Cell Depth Cell

advanceLNL L1 N(L2) 0 N(L2)

advanceLNL L1 L1 0 L1

Example 5-5 advanceLNL

Method Reader Sequencer

advanceLWR List Cell Depth Cell

advanceLWR L1 D(a) 0 D(a)

advanceLWR L1 D(b) 0 D(b)

advanceLWR L1 N(L2) 0 N(L2)

advanceLWR L1 D(f) 0 D(f)

advanceLWR L1 L1 0 L1

Example 5-6 advanceLWR

86

Slip User's Manual
Iterators

Method Reader Sequencer

advanceLWL List Cell Depth Cell

advanceLWL L1 D(f) 0 D(f)

advanceLWL L1 N(L2) 0 N(L2)

advanceLWL L1 D(b) 0 D(b)

advanceLWL L1 D(a) 0 D(a)

advanceLWL L1 L1 0 L1

Example 5-7 advanceLWL

Method Reader Sequencer

advanceSER List Cell Depth Cell

advanceSER L1 D(a) 0 D(a)

advanceSER L1 D(b) 0 D(b)

advanceSER L2 D(c) 1 D(c)

advanceSER L3 D(d) 2 D(d)

advanceSER L2 D(e) 1 L3

advanceSER L1 D(f) 0 L3

advanceSER L1 L1 0 L3

Example 5-8 advanceSER

87

Slip User's Manual
Iterators

Method Reader Sequencer

advanceSEL List Cell Depth Cell

advanceSEL L1 D(f) 0 D(f)

advanceSEL L2 D(e) 1 D(e)

advanceSEL L3 D(d) 2 D(d)

advanceSEL L2 D(c) 1 L3

advanceSEL L1 D(b) 0 D(d)

advanceSEL L1 D(a) 0 L3

advanceSEL L1 L1 0 D(d)

Example 5-9 advanceSEL

Method Reader Sequencer

advanceSNR List Cell Depth Cell

advanceSNR L1 N(L2) 0 N(L2)

advanceSNR L2 N(L3) 1 N(L3)

advanceSNR L1 L1) 0 L3

Example 5-10 advanceSNR

Method Reader Sequencer

advanceSNL List Cell Depth Cell

advanceSNL L1 N(L2) 0 N(L2)

advanceSNL L2 N(L3) 1 N(L3)

advanceSNL L1 L1) 0 L3

Example 5-11 advanceSNL

88

Slip User's Manual
Iterators

Method Reader Sequencer

advanceSWR List Cell Depth Cell

advanceSWR L1 D(a) 0 D(a)

advanceSWR L1 D(b) 0 D(b)

advanceSWR L1 N(L2) 0 N(L2)

advanceSWR L2 D(c) 1 D(c)

advanceSWR L2 N(L3) 1 N(L3)

advanceSWR L3 D(d) 2 D(d)

advanceSWR L2 D(e) 1 L3

advanceSWR L1 D(f) 0 D(d)

advanceSWR L1 L1 0 L3

Example 5-12 advanceSWR

Method Reader Sequencer

advanceSWL List Cell Depth Cell

advanceSWL L1 D(f) 0 D(f)

advanceSWL L1 N(L2) 0 N(L2)

advanceSWL L2 D(e) 1 D(e)

advanceSWL L2 N(L3) 1 N(L3)

advanceSWL L3 D(d) 2 D(d)

advanceSWL L2 D(c) 1 L3

advanceSWL L1 D(b) 0 D(d)

advanceSWL L1 D(a) 0 L3

advanceSWL L1 L1 0 D(d)

Example 5-13 advanceSWL

 5.1 SlipSequencer

This is a fast iterator designed primarily for quick iteration of a list, without iteration over
subordinate lists. It's functionality has been extended to include all of the advance methods used

89

Slip User's Manual
Iterators

in the reader, which includes entry into subordinate lists. However, once the sequencer enters a
subordinate list, it can not return to the lists' parent.

All of the methods described in Section 5.0 are available to the SlipSequencer. The
SlipSequencer constructors and destructors are defined in Table 5.1-1 and the unique methods
are defined in Table 5.1-2.

Table 5.1-1 Constructors and Destructors

return method() Description

SlipSequencer* SlipSequencer(SlipHeader&) Sequencer current cell references SlipHeader.

SlipSequencer* SlipSequencer(SlipSublist&) Sequencer current cell references SlipSublist
header reference.

void delete Deletes the sequencer. The current cell is
unaffected.

Table 5.1-2 Unique Selector Methods

result method() Description

SlipSequencer& reset(SlipCell&) Reset the current cell to the SlipCell. The SlipCell must
be part of a list.

SlipSequencer& reset(SlipHeader&) Reset the current cell to the SlipHeader.

SlipSequencer& reset(SlipReader&) Reset the current cell to the SlipReader current cell.
This generates two iterators for the same list.

SlipSequencer& reset(SlipSequencer&) Reset the current cell to the SlipSequencer current cell.
This generates two iterators for the same list.

 5.2 SlipReader

The SlipReader is a heavy duty iterator. It allows entry into a subordinate list and return from a
subordinate list to its parent. The performance for linear advances are about the same as for the
SlipSequencer. The performance for structural advances are typically greater than that for the
sequencer.

Each SlipReader contains the following application accessible properties:

• A reference to the current list.

90

Slip User's Manual
Iterators

• As each list is entered, it becomes the current list.

• When a subordinate list is entered during a structural advance, the previous SlipReader is
stacked and a new SlipReader cell is created with the new list being the current list and
current cell, and the depth incremented by 1'

• A reference to the current cell. Advances cause the current cell reference to change. On entry
to a subordinate list, the current cell will reference the list header. On exit from a
subordinate list, the current cell will be reference the sublist cell referencing the subordinate
list advanced according the advancing method.

• The depth of the current list, where the depth of the topmost list is 0.

Structural advance examples in Section 5.0 Iterators illustrates the operations when entering and
leaving a subordinate list.

The SlipReader iterator supports all the methods given in Section 5.0 and in the SlipHeader,
Sections 4.1, 4.1.1 and 4.1.2. These methods are defined in Table 4.1-1 SlipHeader Constructors
and Destructors, Error: Reference source not found, Error: Reference source not found, Error:
Reference source not found, and Table 4.1.2-1 Descriptor List Methods.

The constructor and destructor methods are given in Error: Reference source not found. The
SlipReader may be created from the stack or heap (with new). If it is created from the heap, it
must be deleted.

Table 5.2-1 SlipReader Constructor/Destructors

return method() Description

SlipReader& SlipReader(SlipHeader&) Creates a SlipReader with the current list = current
header = SlipHeader and the depth = 0.

SlipoReader& SlipReader(SlipSublist&) Creates a SlipReader with the current list = current
header = SlipSublist.getHeader() and the depth = 0.

void delete Deletes all the good that we have done.

91

Slip User's Manual
Iterators

The methods unique to the SlipReader are given in Table 6.2-2.

Table 5.2-2 Unique SlipReader Methods

return (SlipReader&)
X.method()

Description

SlipHeader& currentList() Return a reference to the current list header.

short listDepth() Return the list depth. A depth of zero is the topmost list.

SlipHeader& reset() Reset the current cell to the current list. Note that this is different
than the SlipSequencer resets.

SlipReader& resetTop() Return to parent list. The current list will be a reference to the
topmost list. The current cell will be to the sublist cell entered the
subordinate list chain. The depth will be 0. In other words, return
to where you entered the list chain. This is equivalent the
performing upLevel() listDepth() times.

SlipReader& upLevel() The current list will be a reference to the parent list. The current
cell will be to the sublist cell which referenced the subordinate
list. The depth will be the depth of the parent list. If the current
list is the topmost list, do nothing.

 6 .0 Errors

 6.1 Theory of Operation

Errors are only detecting during SLIP operations. It is assumed that an error causes the
application to enter an unreliable state, and although the effect of the error may not be felt at the
time of discovery, continued operation will lead to erroneous results or a catastrophic failure. The
default action on error detection is to throw a slipException and enable the application to
degrade gracefully.

The default action can be controlled by the application. Each error message's internal state can be
altered from issuing an exception (slip::eException) to issuing a warning but not an exception
(slip::eWarning) or to ignoring the error entirely (slip::eIgnore). SLIP attempts to perform

92

Slip User's Manual
Errors

internal actions to allow the application to continue and, as appropriate, return a software fault
indication to the user. Where this can not be done, SLIP will abort the application. Changing the
overall behavior does not mitigate the potential for catastrophic effects. The runtime detected
error is still an error, and whatever consequences occur from this error are still present.

The application can assume control over all error detection by providing an application callback
function. On detection of any error, the application callback function is invoked and the
generated error message and the error name are provided to the function. The application can
then output the diagnostic message and perform application specific error recovery. On return
from the callback function the application can flag the calling error function to either throw an
exception or to ignore the error. The SLIP diagnostic function will not output a message.

There are no limitation on the number of times a message state is changed, or on how many
messages are changed. There are no limitations on the number of times the application callback
function is set, but only the last callback function will be active.

 6.2 Error Message Format

The output message format is:

Filename: LineNumber: in Function ErrorNumber MessageText
[CellDump]
[CellDump]

Where the fields are defined as:

Filename File name where error was detected or reported

LineNumber Line number of error post

Function Function posting the error in the file

ErrorNumber Error number. Error numbers are formatted as 'E'
followed by a 4 digit number, as in “E2112”.

MessageText The message text describing the error.

[CellDump] Optional SLIP cell dumps. Format depends on cell type.

93

Slip User's Manual
Errors

 6.3 Application Callback function

The application can intercept all diagnostic messages through an application provided callback
function. The callback function gets control each time SLIP attempts to output a diagnostic
message. The input arguments allow identification of the message being output, the filename and
line number of the message initiator, and the formatted diagnostic message.

The application can elect to perform application specific error recovery and message output
before returning. On return, the application specifies that the SLIP software throws or does not
throw a slipException.

The prototype callback function is defined as:
bool errorCallback((string filename, int lineno, SlipErr::Error err, string message)

where:

filename Filename where error detected or message posted.

lineno Line number where error detected or message posted.

err Message object.

message Formatted message.

return true causes a slipException to be issued. false ignores the error. In
neither case is the formatted message output.

 6.4 Message Object Format (SlipErr)

The message object is passed to the callback function and message content is available through
public methods. The methods provide access to the unformatted message, the message state, the
index of the message body in the array of message bodies, and the message number.

There is a provided method to alter the message state but no means to change the message body,
number, or table index, see Table 6.4-1: Message Object Table.

94

Slip User's Manual
Errors

Table 6.4-1: Message Object Table

return SlipErr::Error.funct() Description

string getErrorNumber() The format is 'E' followed by 4 decimal numbers

int getIndex() Return the message object index into the object table.

string getMessage() Return the unformatted message string.

errorType getState() Return the errorType.

slip::errorType

eIgnore Ignore message

eWarning Output a formatted message

eException Output a formatted message & throw a
slipException

bool isException() true if errorType == eException

bool isIgnore() true if errorType == eIgnore

bool isWarning() true if errorType == eWarning

void setState(errorType) Set the message error state

 6.5 SlipException

The SlipException object provides information useful in determining the cause of the exception
and methods required to determine what action to take. If the application callback function
throws a SlipException it must populate the object. Table 6.5-1: SlipException Constructor
shows the constructor parameters.

95

Slip User's Manual
Errors

Table 6.5-1: SlipException Constructor

type parameters description

SlipErr::Error base Message property object, see Table 6.4-1:
Message Object Table

string message Diagnostic message

SlipCell* cell1 Pointer to a cell or null

SlipCell* cell2 Pointer to a cell or null

The base is used by the SlipErr software to construct a formatted message for output. If the
formatted message contains a SlipCell or SlipCells, then a pointer to these cells are passed to the
SlipException object. If there is one SlipCell then it will always be cell1. SlipCells that are
missing have null as the pointer value.

The methods required to access the exception values are given in Table 6.5-2: SlipException
Methods.

Table 6.5-2: SlipException Methods

const method

SlipErr::Error getBase()

string& getMessage()

SlipCell& getCell1()

SlipCell& getCell2()

char* what()

what() returns the same message as getMessage().

 7 .0 Slip.h

Slip.h is the application interface to the SLIP API. The header file contains three elements:

 1. Inclusion of all required classes. The required and accessible classes for application access to
SLIP are included.

96

Slip User's Manual
Slip.h

 2. Overloaded operators with SLIP as the second operand. An example is:
bool operator<=(LONG a, SlipCell b);

 3. Utility functions. Some useful (static) methods are provided.

The entire SLIP API is provided.

Table 7-1: slip.h Utility Functions

return function description

void avslHistory(bool) true turns history on

SlipState getSlipState() Return internal SLIP state

void printAVSL(caption) Output the AVSL

void printClassSizes() Bytes in each SLIP class

void printFragmentList(caption) Format the fragment list

void printMemory(caption) All AVSL is output

void printState(string) AVSL state

errorType setErrorState(errorType, string) Change message state property ()

void sysInfo(ostream&) SLIP system infrmation

void slipInit() Initialize SLIP using default values

void slipInit(alloc, delta) Initialize SLIP

errorCallback setCallBack(errorCallback) Set application message trap

 8 .0 List Input / Output

Input and output functions guarantee that if SLIP writes (W) a list and then reads a list (R) then,
W= W(R) and that R = R(W), that is, if the list is written using SLIP, then when it is read the
same topology and content will be retrieved, and if the list is read then written then the output
file will represent the same list (formatting and list names may be different). Therefore, the
ASCII formatted output is a suitable framework for storing and retrieval of information.

The application is given access to constructs which allow a list to be created offline and then
input. The guarantees given above apply to well-formed constructs, that is, files which 'follow the
rules'.

97

Slip User's Manual
List Input / Output

This section defines the rules for construction of list files and define the format of list files
created by SLIP.

 8.1 Lexical Elements

 8.1.1 Character Set

The allowable character set (outside of quoted tokens) is:

1. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h I j k l m n o p q r s t u v w x y z

2. The ten digits:
1 2 3 4 5 6 7 8 9 0

3. The special graphics characters:
{ } () # “ ' < > / * . ; $ _

4. The SPACE.

5. The horizontal tab (HT).

6. The newline character (NL or \n).

Inside a quoted token the following additional characters are allowed:

1. The remaining graphic characters:
, / ? ' : | [] ` ~ ! @ & _- = +

2. Escaped characters
\b bell
\f form feed
\n new line
\r carriage return
\t vertical tab
\c any escaped character eg. \”, or \'

98

Slip User's Manual
List Input / Output

 8.1.2 Whitespace

Where one whitespace character is legal many can be used. The whitespace characters are the set
{\a \b \f \n \r \t SPACE}. All characters are interpreted as a SPACE, and multiple characters are
treated as a single SPACE.

 8.1.3 Comments

Anyplace whitespace is legal, a comment can be used. Comments are treated as a single
whitespace character when seen. There are two types of comments:

1. Multiline: A comment bracketed by '/*' and '*/ 'can be wholly contained in one line or can
extend across multiple lines.

2. Single line: A comment beginning with '//' extends from its current location until the end of
line.

All characters seen from the comment start to its termination are ignored. In the case of multiline
comments, this is from the leading '/*' to the trailing '*/'. In the case of single line comments, this
is from the comment start '//' to the end of line. Nested comments are not supported. Comments
are not saved in a list, they are ignored.

99

((/* this is a comment */))

((/* this is a
 multiline comment */))

((// this is a single line comment
))

Example 8.1.3-1 Comment Example

Slip User's Manual
List Input / Output

 8.1.4 Tokens

The characters in the alphabet are collected into a token by the lexer. The tokens are the
maximum set of characters that can be combined to form a token according to the token rules.
There are 4 types of tokens, separators, keywords, identifiers, constants.

 8.1.4.1 Separators

The following characters are separators and form a single token:
() { } < > #

The legal context for each token is given below. Each separator, except '#', must be balanced.
That is, where the left separator appears, the right separator must also appear using the following
algorithm:

1. Push the left separator onto a stack.

2.When the right separator is seen, the left separator must be on the stack top. Pop the left
separator.

The separators have the following meanings:

1. (): Brackets a list. All items between these brackets are part of the same list. Parentheses can
be nested, as in “((() ())”.

2. < >: Brackets a Descriptor list. All items between these brackets are part of the same list.
Angle brackets can be nested, as in “< < < > > >”. Unlike lists, brackets must be nested, and
can not be disjoint, as in “< < > < > >”.

3. { }: This identifies a named list, as in “{name}”. The brackets can not be nested.

4. #: This identifies a preprocessing statement. The action performed is immediate and the
results of the action are processed by the parser.

 8.1.4.2 Identifiers

An identifier consists of a leading alphabetic character or an underscore ('_') or dollar sign ('$')
followed by zero or more alphanumeric characters or underscores ('_') or dollar signs ('$').
Embedded whitespace is not allowed and there are no limitations on size.

100

Slip User's Manual
List Input / Output

As a regular expression this can be written as:
([a-z]|[A-Z]|$|_)([a-z]|[A-Z]|[0-9]|$|_)*

 8.1.4.3 Keywords

There are two keywords in SLIP, “user”, and “include”. They must both be in lower case and
spelled exactly as shown.

 8.1.4.4 Constants

SLIP supports several types of constants. There is a one-to-one correspondence with the
constants in input/output operations and the typedef's used in runtime applications. The constants
and the typedef's are architecturally independent and are designed to have the same content and
size from compiler to compiler, and computer to computer. The format corresponds to the
general format of C/C++ constants with the constraint that they are SLIP, and not, C/C++ values.

Boolean values are represented as 'true' or 'false' on input or output. When the input list file has
'true' or 'false' a boolean object is created as in SlipDatum((bool)true). During output, a boolean
object is output as the literal 'true' or 'false'.

Embedded blanks are not allowed in integral or real number constants.

The integral types are octal, decimal, and hexadecimal.

101

Legal Names:
_ // single character name
$ // single character name
name // alphabetic character name
name_ // alphabetic & special symbols
__na$m123e$_ // alphanumeric & special symbols
x01234 // alphanumeric
name_name // alphabetic & special symbols

Illegal Names:
na me // embedded blank
2name // leading numeric character
_name[] // illegal characters
name-name // illegal character

Example 8.1.4-1: Legal / Illegal Names

Slip User's Manual
List Input / Output

Octal constants are represented as '0' followed by zero or more digits in the range 0 - 7. For
example, 012345 is an octal number but 0123458 is not – 8 is not an octal number.

Integer constants are represented as '1' followed by zero or more digits in the range 0 – 9. For
example 12345 is an integer and is different from 012345, an octal number.

Hexadecimal constants are represented as “0x” or “0X”, where '0' is the number zero, followed
by one or digits in the range 0 – 9, a – f, A – F. For example 0xDeadBeef is a hexadecimal
constant.

Each integral type can be optionally followed by a unsigned specification, 'U', and a size
specification, 'C' or 'L', Capitalization is ignored. If 'U' is not specified, then the number is
signed. The specifications have the following meaning.

• Signed means that the integral number is stored into a signed SlipDatum character or integer
object.

• Unsigned means that the integral number is stored into a nunsigned SlipDatum character or
integer object.

• 'C' means that the integral number is stored into a SlipDatum((CHAR) object. Hexadecimal
number can not have a 'C' size specification.

• 'L' means that the integral number is stored into a SlipDatum((LONG) object.

The default for a missing unsigned specification is signed, and the default for a missing size
specification is 'L'.

Example 8.1.4-2 Integral Constructions, shows the SlipDatum object created for each integral
type in the input list file. Output is always an integer, not octal or hexadecimal, so the
automatically generated output for each integral type is the number at the left. If the integral type
is a signed integer, SlipDatum((LONG)), then the integer output does not include a size or sign
specification but defers to the default.

102

Slip User's Manual
List Input / Output

Example Constructed SlipDatum object

012345 -> SlipDatum((LONG)012345) // octal number

0123C →> SlipDatum((CHAR)0123) // octal number

012345L -> SlipDatum((LONG)012345) // octal number

012345U -> SlipDatum((ULONG)012345) // octal number

0123UC -> SlipDatum((UCHAR)0123) // octal number

246789 -> SlipDatum((LONG)246789) // decimal number

123C -> SlipDatum((CHAR)123) // decimal number

246789L -> SlipDatum((LONG)246789) // decimal number

246789U -> SlipDatum((ULONG)246789) // decimal number

0xAB -> SlipDatum((LONG)0xAB) // hexadecimal number

0xABL -> SlipDatum((LONG)0xAB) // hexadecimal number

0xABUC -> SlipDatum((UCHAR)0xAB) // hexadecimal number

0xABU -> SlipDatum((ULONG)0xAB) // hexadecimal number

Example 8.1.4-2 Integral Constructions

SLIP only supports real doubles. The input format for a double is any of “

• #.#, #., .# optional decimal number with a fraction. The decimal point is required.

• #E#, #E+#, #E-#: real number with an exponent. The exponent, 'E', can be upper case or
lower case.

• #.E#, ..#E# any combination of the previous two forms.

• Any of the above forms with a sign (+, -).

In a manner similar to integral numbers, real numbers are defined in Example 8.1.4-3 Real
Number Constructions. Input from the list input file creates an object of type
SlipDatum((LONG)).

103

Slip User's Manual
List Input / Output

Example Constructed SlipDatum object

1. -> SlipDatum((DOUBLE)1,) // floating point number

+1. -> SlipDatum((DOUBLE)+1.) // floating point number

.1 -> SlipDatum((DOUBLE).1) // floating point number

-.1 -> SlipDatum((DOUBLE)-.1) // floating point number

1.1 -> SlipDatum((DOUBLE)1.1) // floating point number

-1.1 -> SlipDatum((DOUBLE)-1.1) // floating point number

1E10 -> SlipDatum((DOUBLE)1E10) // floating point number

+1E-10 -> SlipDatum((DOUBLE)+1E-10) // floating point number

-.1E+10 -> SlipDatum((DOUBLE)-.1E+10) // floating point number

Example 8.1.4-3 Real Number Constructions

Single characters are input or output as 'c', where 'c' is a character. Strings are multiple characters
delimited by “”, as in “multiple characters”. Characters and strings can have embedded blanks.

Character objects are created using SlipDatum((CHAR)'c') and string objects are created using
SlipDatum((STRING)”string”) which is equivalent to SlipDatum((STRING)”string”, false). The
application loses its ability to share and control strings on input from an input list file. SLIP
deletes strings during object deletion, and creates a new instance of a string when a copy
operation is warranted.

Strings and characters can have octal, decimal, hexadecimal, and special characters inserted into
them. Integral data types do not have sign or size specification. The characters are converted to
an 8-bit octet. Strings are output without conversion. Characters are output as an integer for
values outside the printable character range. On output format of these numbers and characters is:

• \0# octal number. Where 0 ≤ # ≤ 7.

The input list file legal formats are:

104

Slip User's Manual
List Input / Output

• \0# octal number. Where 0 ≤ # ≤ 7.

• \1# decimal number. Where 0 ≤ # ≤ 9 .

• \x# hexadecimal number. Where 0 ≤ # ≤ 9 or a ≤ # ≤ f or A ≤ # ≤ F..

• \b bell.

• \f form-feed.

• \n newline.

• \t tab.

For convenience types are provided to the application. The meaning of the types is SLIP-centric.

Table 8.1.4-1 Integer Constant Equivalences

INPUT Application OUTPUT cstdint range

TRUE SlipDatum((bool)true) TRUE bool 0 ≤ x ≤ 1

FALSE SlipDatum((bool)false) FALSE bool 0 ≤ x ≤ 1

'c' SlipDatum((CHAR)'c') 'c' int8_t -128 ≤ x ≤ 127

'\05'C SlipDatum((CHAR)'\05') 5C int8_t -128 ≤ x ≤ 127

'\x41'C SlipDatum((CHAR)'\x41') A int8_t -128 ≤ x ≤ 127

'\n'C SlipDatum((CHAR)'\n') 10C int8_t -128 ≤ x ≤ 127

'\xFF'C SlipDatum((UCHAR)'\xFF') -1C int8_t -128 ≤ x ≤ 127

'c' SlipDatum((UCHAR)'c') 'c' uint8_t 0 ≤ x ≤ 255

105

SlipDatum((CHAR)1)->write() => '\1'

'\1' => SlipDatum((CHAR)1);

'\01' => SlipDatum((CHAR)1);

'\x1' => SlipDatum((CHAR)1);

SlipDatum((STRING)”12\n34”)->write() => 12
 34

“12\n34” => SlipDatum((STRING)”12\n34”) // binary '10' replaces \n

Example 8.1.4-4 Character/String Input/Output

Slip User's Manual
List Input / Output

Table 8.1.4-1 Integer Constant Equivalences

'\05'UC SlipDatum((UCHAR)'\05') 5UC uint8_t 0 ≤ x ≤ 255

'\x41'UC SlipDatum((UCHAR)'\x41') A uint8_t 0 ≤ x ≤ 255

'\n'UC SlipDatum((UCHAR)'\n') 10UC uint8_t 0 ≤ x ≤ 255

'\xFF'UC SlipDatum((UCHAR)'\xFF') 255UC uint8_t 0 ≤ x ≤ 255

1 SlipDatum((LONG)1) 1 int32_t --2(32-1) ≤ x ≤ -2(32-1) - 1

1L SlipDatum((LONG)1) 1 int32_t --2(32-1) ≤ x ≤ -2(32-1) - 1

11 SlipDatum((LONG)011) 9 int32_t --2(32-1) ≤ x ≤ -2(32-1) - 1

-1 SlipDatum((LONG)-1) -1 int32_t --2(32-1) ≤ x ≤ -2(32-1) - 1

0xFFFF SlipDatum((LONG)0xFFFF) -1 int32_t --2(32-1) ≤ x ≤ -2(32-1) - 1

0xFFFFL SlipDatum((LONG)0xFFFF) -1 int32_t --2(32-1) ≤ x ≤ -2(32-1) - 1

1U SlipDatum((ULONG)1) 1U uint32_t 0 ≤ x ≤ -2(32) - 1

1UL SlipDatum((ULONG)1) 1U uint32_t 0 ≤ x ≤ -2(32) - 1

011U SlipDatum((ULONG)011) 9U uint32_t 0 ≤ x ≤ -2(32) - 1

0xFFFFU SlipDatum((ULONG)0xFFFF) 4294967295U uint32_t 0 ≤ x ≤ -2(32) - 1

Legend

INPUT The format in the input list file Where applicable, U and C and be
upper or lower case.

Application The format used to convert the input to the equivalent value in a
list and the typical format for the same value in the application.

OUTPUT The format of the output in the list file. Where applicable, U and
C and be upper or lower case.

cstdint The representation typedef equivalence for the application caste.

range The range of integral values associated with the type.

106

Slip User's Manual
List Input / Output

Table 8.1.4-2: Floating Point Equivalences

INPUT Application OUTPUT cfloat range

1 SlipDatum(1.) 1 double --2.22507 10308 ≤ x ≤ 1.797693 10308

1.E0 SlipDatum(1.E0) 1 double --2.22507 10308 ≤ x ≤ 1.797693 10308

,1 SlipDatum(.1) 0.1 double --2.22507 10308 ≤ x ≤ 1.797693 10308

1E-1 SlipDatum1E-1) 0.1 double --2.22507 10308 ≤ x ≤ 1.797693 10308

1E-5 SlipDatum(1E-5) 0.00001 double --2.22507 10308 ≤ x ≤ 1.797693 10308

-1E+5 SlipDatum(-11E+5) -10000 double --2.22507 10308 ≤ x ≤ 1.797693 10308

Legend

INPUT The format in the input list file The exponent, 'E,' can be upper or
lower case.

Application The format used to convert the input to the equivalent value in a
list and the typical format for the same value in the application.

OUTPUT The format of the output in the list file. The exponent, 'E,' can be
upper or lower case. Actual output formats depend on the
precision and range of the input.

cfloat The representation typedef equivalence for the application caste.

range The range is specific to the range for gcc, see
helpcentreonline.com/article/primitiv_console_gcc.pdf

107

Slip User's Manual
List Input / Output

Table 8.1.4-3 String Equivalencies

INPUT Application OUTPUT

“” SlipDatum(“”, false) “”
SlipDatum(“”, true) “”

“abc” SlipDatum(“abc”, false) “abc”
SlipDatum(“abc”, true) “abc”

“a\nb” SlipDatum(“a\nc”, false) a
b

SlipDatum(“a\nc”, true) a
b

“\x0A SlipDatum(“a\x0Ac”, false) a
b

SlipDatum(“a\x0Ac”, true) a
b

Legend

INPUT The format in the input list file. There is no equivalent format to
a constant string in the input. All input strings are considered to
be non-constant. Changing the value in one string will not change
the value in any other, identically appearing string.

Application The format used to convert the input to the equivalent value in a
list and the typical format for the same value in the application.

OUTPUT The format of the output in the list file. There is no equivalent to
a constant string on output. All output strings are considered non-
constant.

 8.2 List Language

The language defines constructs sufficient to guarantee round-trip processing of a list. The list
output replicates features in the list, and the list input recaptures those features, restoring the list
to be identical to its original. There is one exception. The constant string type is not recovered
on input. All input strings are non-constant. Floating point number input/output is exact.

108

Slip User's Manual
List Input / Output

An important consideration in round-trip processing is the recognition of list sharing, that is,
multiple references to the same list. This is supported using references to named lists. A named
list is a list and has a temporary name. Creating and referencing a name shares a list.

The list language allows declarations to be shared in multiple files and included during list
definition. Each file can contain only declarations and include statements. Any file containing the
definition of the returned list will cause input processing to stop. Include cycles (recursion) is ont
supported.

A list file can be output by SLIP or can be modified or constructed in a text editor. Both forms
are readable by the SLIP reader. The only required content of a list file is the list definition.

A list file can contain the following elements:

comment Inline (/* */) and line (//) comments are supported. Inline comments can be
multiline. Line comments are only one line.

include directive Include files can not contain a list definition. Include files can be nested (an
include file can contain another include file). Include file names must be
unique. All definitions in an include file are processed before resumption of
processing at the next higher level.

user data list A list of Application Data classes used in named lists or the list definition.

Application Data
reference

A reference to a Application Data class in a named list or list definition
accompanied by the object data. Causes the object data to be processed by the
Application Data class parser and an Application Data SlipDatum object to
be inserted into a list.

named list Used to allow shared sublists to be created and/or to simplify the list
definition. A named list is a list with a name. It has all the characteristics of a
list definition except that it can not be returned as a list.

named list reference A reference to a named list. The named list is copied into a descriptor list or
becomes a shared list

descriptor list Any list can have one and only one descriptor list. This is defined in the
SlipHeader Section.

list definition The list to be returned. It can contain sublists, shared lists (name lists),
Application Data objects, and a descriptor list. The definition is recursive in
that any sublist can have the same components. A sublist (or named list) is a
list.

109

Slip User's Manual
List Input / Output

A simple example of a list file is:

Example 7.2-1 shows the following aspects of a list file:

• Application Data declaration: Declares the Application Data object in the list file. This is
optional. Warning messages are given if the listed Application Data class names are not
registered.

• Named lists. Named list define reusable lists. Named lists can be used anywhere a list is
required. Named lists which are not used in the returned list are reported as being unused.

• Description List. A list containing a Description List using a named list is given in the list2
definition. The Description List uses a reference to a named list as the key in a <key, value>
tuple.

• List definition. The returned list is indicated by it being a list without a name. It contains
references to

• Named lists. Several named lists are used in the list definition, and

• Application Data object. Each Application Data object is prefixed by the object class
name and followed by a list representing the object contents, and

110

user data1, data2; // Application Data class names
list1 (1 2U 3uc); // named list
list2 (< {list1} “string” > 3.714 'a'); // named list w/descriptor list
list3 ('\x0A'); // named list

/*
 * This is the list returned to the user. It is the last
 * list processed. If this, the list definition, is seen
 * anywhere in the first list input file or in any include
 * file, list parsing will stop and this list will be
 * returned. The format of the named list and the list
 * definition is the same. A named list is a list with
 * a name.
*/

(“main string” {list1} {list2} {list1} ({list3} data1(1c 2C) data2(3u 4uc))

/*
 * Input list parsing will not parse this comment. List
 * List processing stops as soon as the list definition
 * is seen.
 *
*/

Example 8.2-1 List File

Slip User's Manual
List Input / Output

• Reused lists ({list1}). Each reused list references the same list.

 8.2.1 Include File Syntax

An include file allows named lists, user data lists, and other include files to be used. Include files
are expanded at the point of detection and the include file contents are scoped to the outermost
file (the initial file parsed by the user). If any include file contains a list definition which is not a
named list, parsing will terminate and all files will be closed.

No include file can reference itself directly or indirectly. Each include file must be unique.

SYNTAX: # include “path/filename”
include “filename”

include is a keyword
path is a valid path in the operating system
filename is a valid filename in the operating system
is required
/ is a path/filename separator
“ is required to bracket the path, filename

blanks before or after the hash symbol, #, and the include keyword are ignored
blanks in the path or filename are operating system dependent.

Example 7.2.1-1 illustrates the following concepts:

• Three include files serving different purpose.

111

include “UserData”
include “NamedList”
include “ListDefinition”

// File: UserData
user data1, data2;

/// File: NamedList
hobbes (1 2 3)
calvin(5 6 6)

// File: ListDefinition
({data1(“User Data”) {calvin} { {calvin} hobbes(1.4 5, “Hobbes”))

 Example 8.2.1-1: Include Syntax

Slip User's Manual
List Input / Output

• File UserData contains the Application Data classes used in the list. It is processed to
completion and then closed and the outermost file entered.

• File NamedList contains named lists used in the list definition. It is processed to completion
and then closed and the outermost file entered.

• File ListDefinition contains the the return list. It is processed to conclusion and then a return
is made to the application.

Another example.

Example 7.2.1-2 illustrates the following concepts:

• Three include files serving different purpose.

• File UserData contains the Application Data classes used in the list. It is processed to
completion and then closed and the outermost file entered.

• File ListDefinition contains the the return list. It is processed to conclusion and then a return
is made to the application.User Data Syntax. Errors will occur because the List Definition
was processed before the “NamedList” file was processed.

• File NamedList contains named lists used in the list definition. This file is not processed.
The List Definition occurs before the include statement for this file preventing file
processing.

112

include “UserData”
include “ListDefinition”
include “NamedList”

// File: UserData
user data1, data2;

/// File: NamedList
name1 (1 2 3)
calvin(5 6 6)

// File: ListDefinition
({data1(“User Data”) {name1} { {calvin} data2(1.4 5, “Hobbes”))

Example 8.2.1-2: Include Syntax Errors

Slip User's Manual
List Input / Output

 8.2.2 Application Data Syntax

Prior to input processing, each Application Data class used must be registered. If during input
parsing, a reference to an Application Data class is seen but the class has not been registered,
then an Application Data object will not be created and the returned list will be in error.

The syntax for an Application Data list is:

SYNTAX: user identifier [, identifier, …];

user is a keyword
identifier must conform to identifier naming conventions
, separator
; mandatory, terminal semicolon

blanks before or after the separator are ignored

The syntax for an Application Data reference is:

SYNTAX: identifier (list)

identifier must conform to identifier naming conventions
 (list) any valid list

blanks before or after the identifier are ignored
blanks before or after the parentheses are ignored

Example 7.2.2-1 illustrates the following:

• Precondition: Application Data classes matrix and eigen are registered by the application.
Application Data class interpolate was registered but not listed – this is not an error.

• A warning message is issued that Application Data class regression was not registered by
the software.

• After the list definition is processed,, a warning error is issued that Application Data class
regression was not used.

• Application Data class interpolate is processed without error, it was registered prior to
processing.

113

user matrix, eigen. regresssion;
(matrix(((1.1 1.2) (2.1 2.2)) interpolate(5.56, 17.852))

Example 8.2.2-1: Application Data Syntax

Slip User's Manual
List Input / Output

• The data passed to the matrix parser for input processing is a list consisting of two sublist.
The first sublist is (1.1 1.2) and the second sublist is (2.1 2.2). If the Application Data class
matrix uses an n-dimensional C++ matrix to store data, then this is translated by the matrix
parser to
double matrix[][2] = { {1.1, 1.2}, {2.1, 2.2} };.

• The data passed to interpolate is the list (5.56, 17.852). If interpolate uses some method
to interpolate a value between these values, then interpolate could translate the input to
double value = func(5.56, 17.852);

Application Data processing is an application issue. The parser passes a single list to the
registered parser for the input named class. The registered parser is responsible for converting the
input list in a manner it finds suitable, and then deleting the input list as necessary.

 8.2.3 Named List Syntax

A named list represents a defined list. The name can be used anywhere a sublist can be used and
can be used as a Descriptor List. When used as a sublist, the list is referenced. When used as a
Descriptor List, the list is copied. References are not unique. Several references to the same
named list reference the same list. Descriptor Lists are unique. Several uses of the same named
list as Descriptor Lists are all unique.

All named lists identifiers must be unique .In any list input file and in any include file reachable
from the list file, each named list identifier definition can appear once. That is:

list1 (…); // and
list1 (…); // is illegal

The list definition supplied with the named list is a list. It has all the properties, and can contain
any of the elements or objects, of a list. The list definition may have sublists, may reference other
named lists, and each list may have a Descriptor List which is defined by a named list or may
contain a named list as a key or value in the <key, value> tuple.

A named list may be used before it is defined. This is called a “forward reference”. Forward
references are resolved at the time a definition is seen.. For example:

define ({forward”);
forward();

is legal. When 'forward' is defined, 'define' is completed.

No named list may reference itself directly or indirectly. That is, circular references are not
allowed (and will go undetected). This prohibition includes Descriptor Lists. A Descriptor List

114

Slip User's Manual
List Input / Output

which is a part of the named list definition or any sublist contained or reachable from the outer
list of the definition can not reference itself.

A named list reference may be the list definition returned to the user.

The syntax for a named list is:

SYNTAX: identifier { list };

identifier must conform to identifier naming conventions
{ list } a legal list
; mandatory, terminal semicolon

blanks before or after the identifier are ignored
blanks before or after the curly braces ('{' '}') are ignored
blanks before or after the semicolon are ignored

The syntax for a named list reference is:

SYNTAX: {identifier}

identifier must conform to identifier naming conventions
 { } required brackets

blanks before or after the identifier are ignored
blanks before or after the curly braces ('{' '}') are ignored

Example 7.2.3-1 shows:

• An example of a named list which is an empty list (fuzzy).

• A sublist reference to an empty named list (logic).

• The named list is returned as the List Definition.

115

fuzzy (); // an empty list
logic ({fuzzy}); // a list w/a reference to an empty list
{logic} // logic is the return list definition

Example 8.2.3-1 Named List

Slip User's Manual
List Input / Output

 8.2.4 List Syntax

The list definition is recursive.

• A list is delimited by parenthesis, '(', ')'. Everything between the parentheses is part of a list.

• An empty list is defined as a left parentheses followed by a right parentheses '()'

• A list can contain zero or more SlipDatum objects

• A list can contain zero or more sublists

• A sublist is a list or can be denoted by a named list, {name}.

• A list can contain zero or one Description Lists and must be the first entry in the list.

There is a unique list returned as a result of parsing the input file, the List Definition. The List
Definition can either be a list, as described in the List Syntax, or a named list. This is the only
place where a named list can occur outside of a list. That is, either a named list is in a list, sic.
Description List or it is the List Definition to be returned to the application.

SYNTAX: (listitem …)

() list brackets
listitem zero or more list items (lists, SlipDatum objects or named lists)

blanks before or after the list brackets are ignored
blanks before or after a listitem are ignored

 8.2.4.1 Description List

A Description List is a list surrounded by the brackets '<.' and '>' with the exception

• That the list consists of 2-tuples, <key, value>, and

• < {name} > means that the named list {name} is the Description List contents and not a
sublist.

116

Definition ({forward});// forward is a sublist in definition
forward (); // an empty list
 // a complex list (1 3.7 () () ('c' ())
list (1 3.7 {forward} {forward} ('c' {forward}))

Example 8.2.4-1 Lists

Slip User's Manual
List Input / Output

A named list can also be an item of a <key, value> pair. That is:
 < {name1} 1 {name2} 2 >

are two <key, value> pairs included in the Description List and not a (very) complex way of
defining a Description List.

A Description List must have an even number of items, where zero is considered even.

SYNTAX: < listitem listitem … >

() list brackets
listitem zero or more list item pairs (lists, SlipDatum objects or named lists)

blanks before or after the list brackets are ignored
blanks before or after a listitem are ignored

There is one anomaly in this definition. Since a Description List is recursively defined as a list
(with different brackets), Description List can have a Description List (which can have a …).
This is syntactically legal and will be processed correctly. But an embedded Description List has
no access or processing support at runtime. In a word, ya' can create it but then so what, it is
unusable.

Example 7.2.4.1-1 illustrates several points:

• dList1 < {list1> {list1} > have two different uses of {list1} which are not shared.
The instance of {list1} inside the Description List is a copy of list1. The {list1} outside
of the Description List is a sublist reference to list1. Any changes made in this sublist are
reflected to all other sublists referencing the same list.

• dList2 (< {dlist1} > {list1}) uses the definition of {dlist1} as the definition of
the Description List for dList2. This means that the entire definition for {dlist1} is
copied into the Description List for dList2. dlist1 loses its identity as being referenceable
list and becomes a stand-alone Description List embedded in a Description List. List1
contained in dlist1 is copied into the Description List for dList2 and becomes its <key,
value> pair. The reference to {list1} in the list body becomes a reference to list1 in its

117

list1 { 1 2); //
dlist1 (< {list} > {list1}); // (< 1 2 > (1 2))
dList2 (< {dlist1} > {list1}); // (< < 1 2 > 1 2 > (1 2))
dList3 (< 3 4 > 5 6);
defList({dList2} {dList3});
{defList} // what a mess!

Example 8.2.4-2: Description List

Slip User's Manual
List Input / Output

definition. This reference is shared. Any change made to the sublist will cause a
simultaneous change to, for example, the same sublist reference in dlist1.

• Dlist3 has a simple Description List and two list items.

• defList has no Description list but references {dList2} and {dList3}, each of which has a
Description List. The references to in {dList2} and {dList2} preserve their references to
{list1}. Any change in {list1} on either path will affect both references. Any change to
either Description List will be local to the containing list.

 8.2.5 Parser Syntax Equations

Grammar

 0 $accept: sublistDeclarations_Definition $end

 1 sublistDeclarations_Definition: declarations listDefinition END
 2 | declarations namedList END
 3 | declarations
 4 | listDefinition END
 5 | namedList END

 6 declarations: declarations declarationItem
 7 | declarationItem
 8 | END

 9 declarationItem: LIST forwardReferenceList ';'
 10 | name listDefinition ';'
 11 | USER userDataList ';'
 12 | include

 13 forwardReferenceList: forwardReferenceList ',' name
 14 | name

 15 listDefinition: '(' mark description list ')'
 16 | '(' mark description ')'
 17 | '(' description list ')'
 18 | '(' description ')'
 19 | '(' mark list ')'
 20 | '(' mark ')'
 21 | '(' list ')'
 22 | '(' ')'

 23 description: '<' description descriptionList '>'
 24 | '<' descriptionList '>'
 25 | '<' description '>'
 26 | '<' mark '>'
 27 | '<' '>'

 28 descriptionList: descriptionItemlist

118

Slip User's Manual
List Input / Output

 29 | mark descriptionItemlist
 30 | namedList

 31 descriptionItemlist:
 descriptionItemlist descriptionElement

descriptionElement
 32 | descriptionElement descriptionElement

 33 descriptionElement: namedList
 34 | datum
 35 | '(' listItemList ')'

 36 include: '#' INCLUDE datum

 37 userDataList: userDataList ',' name
 38 | name

 39 list: listItemList

 40 listItemList: listItemList listItem
 41 | listItem

 42 listItem: datum
 43 | namedList
 44 | userData
 45 | listDefinition

 46 mark: '{' number '}'

 47 namedList: '{' name '}'

 48 userData: name listDefinition

 49 datum: BOOL
 50 | CHAR
 51 | UCHAR
 52 | number
 53 | FLOAT
 54 | STRING

 55 number: INTEGER
 56 | UINTEGER
 57 | CHARS
 58 | CHARU

 59 name: NAME

 8.3 Output

Output methods are recursive, with recursive depth directly proportional to the nesting depth of
the output list.

119

Slip User's Manual
List Input / Output

Round-trip and non-round-trip output are supported. Round trip output makes use of all the
language features described. Non-round-trip output does not support list sharing, named lists, or
Application Data lists. It is primarily a means to pretty-print a list.

The output of non-round-trip output can be to either a file or a string. Round-trip output must be
to a file.

Examples of use are given in Example 8.3-1: Output.

120

Slip User's Manual
List Input / Output

 Some notes on Example 8.3-1: Output:

121

string fileame = "Test";
ofstream out;
out.open("Test", std::fstream::out);

SlipHeader* list = new SlipHeader();
SlipDatum* listKey = new SlipDatum((CHAR)'a');
SlipDatum* listValue = new SlipDatum((LONG) 1);

list->create_dList();
list->put(*listKey, *listValue);

SlipHeader* sublist = new SlipHeader();
SlipDatum* sublistKey = new SlipDatum((CHAR)'b');
SlipDatum* sublistValue = new SlipDatum((LONG)2);

sublist->enqueue((LONG) 5);
sublist->create_dList();
sublist->put(*sublistKey, *sublistValue);

list->enqueue((LONG) 3).enqueue(*sublist).enqueue(*sublist);

/*
 * OUTPUT
 * (< 'a' 1 > 3 (< 'b' 2 > 5) (< 'b' 2 > 5))
 *
 */

list->writeQuick(); // output to cout
list->writeQuick(out); // output to a stream
list->writeQuick(filename); // output to a file
string strList = list->writeToString(); // return a string

out << endl << “Round-trip output” << endl;

/*
 * OUTPUT
 * list1 ('a' 1);
 * list2 (< {list4} > 5);
 * list3 (< {list1} > 3 {list2} {list2});
 * list4 ('b' 2);
 * {list3}
 */

list->write();
list->write(ostream& out);
list->write(filename);

Example 8.3-1: Output

Slip User's Manual
List Input / Output

• Character output ('a', and 'c') does not have a size suffix ('C'). The default size and sign is
CHAR.

• The method using a filename argument open and close the file. Streams are not opened or
closed.

• If the stream is a stringstream then the behavior is the same as for writeToString() except the
return is stored in a stream and not a string.

• Non-round-trip output does not show that lists are shared. Round-trip output shows sharing.

• Round-trip output shows:

• list sharing (list2).

• Description Lists are named lists (list1 and list4).

Not shown is Application Data Output. Application Data is displayed as class-name (list). If
instead of '3' in Example 8.3-1: Output we had a Application Data class named UDP which
output the list '(“STRING” 3.7)' the output would have been:

(< 'a' 1 > UDP(“STRING” 3.7) (< 'b' 2 > 5) (< 'b' 2 > 5)) and

list1 ('a' 1);
list2 (< {list4} > 5);
list3 (< {list1} > UDP(“STRING” 3.7) {list2} {list2});
list4 ('b' 2);
{list3}

 8.4 Input from a List File

The reader is iterative (no recursion) but uses the heap.

The reader parses and input list file and returns a list. There are three steps in reader use:

• Instantiate the class SlipRead.

• Register all Application Data classes used n the input list file.

• Parse the input list file.

The list of Application Data classes must be known by the user. If the input list file was created
by SLIP, all the required Application Data class names are provided. If the input file was created
by an outside source, the the creator must provide this information procedurally or in the input
list file.

122

Slip User's Manual
List Input / Output

If the debug version of SLIP is being used, the user can turn on debugging prior to parsing. There
are several independent options. The options allow tracing of the parser reductions, the lexer
tokens, and hash table activity. They can be used for problem isolation in the input list file
(where does the problem occur and who is responsible). The legal values are:

• SlipRead::HASH Output Hash Table debug statements.

• SlipRead::INPUT

• SlipRead::LEXER Output lexer debug statements.

• SlipRead::PARSER Output Parser debug statements.

• SlipRead::ALL Output all debug statements.

Debug selection is:
SlipRead::setDebugON(SlipRead::LEXER | ...);

where one or all the options can be missing. If all options are missing, the default is
SlipRead::ALL.

The input list file content is given in Section 7.1 and Section 7.2.

Constructor for SlipRead are given in Table 7.4-1.

Table 8.4-1: SlipRead Constructors

Constructor Description

SlipRead(int debugFlag) Constructor for SlipRead class.. The default is debug is off
when SLIP debug compilation is used.

123

Slip User's Manual
List Input / Output

Table 8.4-1: SlipRead Constructors

Constructor Description

SlipRead(const int size, SlipDatum
const userData[], int debugFlag)

Constructor for SlipRead class.. The default is debug is off
when SLIP debug compilation is used. An array of
Application Data class object is input and the Application
Data classes registered.

SlipRead(const int size, SlipDatum *
const userData[], int debugFlag)

Constructor for SlipRead class.. The default is debug is off
when SLIP debug compilation is used. An array of pointers
to Application Data class object is input and the
Application Data classes registered.

Table 8.4-2: SlipRead Methods

return ((SlipRead&)X).method() Description

int getError() Returns the number of errors
found. Zero means no errors.

SlipHeader& read(string filename) Parse an input file given by
filename.

bool registerUserData(const SlipDatum&) Register a (single) Application
Data class

bool registerUserData(int size, SlipDatum* userData) Register an array of Application
Data classes

bool registerUserData(int size, SlipDatum userData[]) Register an array of Application
Data classes

void setDebugON(int debugFlag = INPUT) Turn debug on, default
SlipRead::INPUT

The 2-fold way to reading an input list file. Two examples are provided. The first shows how to
parse an input list file containing no Application Data objects, and the second shows how to
parse an input file containing a Application Data object.

124

SlipRead* read = new SlipRead();
SlipHeader& list = read->read(“filename”);

Example 8.4-1 Reading a File without User Data

Slip User's Manual
List Input / Output

The second example is a little harder.

125

Slip User's Manual

References

1. An Introduction to the List Processing Language SLIP
Joseph Weizenbaum
Programming Systems and Languages
McGraw-Hill Book Company, 1967

2. Knotted Lists
Joseph Weizenbaum
Communications of the ACM V05N3, 1963

3. Symmetric List Processor
Joseph Weizenbaum
Communications of the ACM V06N9, 1963

4. On the Reference Counter method
J. Harold McBeth
Communications of the ACM V07N1, 1964

5. SLIP
L. D. Yarbrough
Communications of the ACM V07N1, 1964

6. Commenting on the Implementation Issues
Joseph Weizenbaum
Communications of the ACM V07N1, 1964

7. More on the Reference Counter Method of Erasing Lists
Joseph Weizenbaum
Communications of the ACM V07N1, 1964

126

SlipDatum* UserData = new SlipDatum(UserDataClass);

METHOD 1:
SlipRead* read = new SlipRead(*UserData);
SlipHeader& list = read->read(“filename”);

METHOD 2:
SlipRead* read = new SlipRead(*UserData);
read->registerUserData(*UserData);
SlipHeader& list = read->read(“filename”);

delete UserData;

Example 1: Reading a File with User Data

Slip User's Manual
References

8. A Comparison of List Processing Computer Languages COMIT, IPL, LISP, SLIP
Daniel G. Bobrow, Bertram Raphael
Communications of the ACM V07N4, 1964

9. More on SLIP
Sanford Elkin
Communication of the ACM V07N5, 1964

10. A Note on the Formation of Free Lists
William M. Waite
Communications of the ACM V07N8, 1964

11. The Implementation of SLIP
Donald B. Russell
Communications of the ACM V08N5, 1965

12. The Implementation of SLIP
Joseph Weizenbaum
Communications of the ACM V08N5, 1965

13. ELIZA – A Computer Program For the Study of Natural Language Communication Between
Man And Machine
Joseph Weizenbaum
Communications of the ACM V09N1, 1966

14. AUTOMAST: Automatic Mathematical Analysis and Symbolic Translation
William E. Ball, Robert I. Berns
Communications of the ACM V09N8, 1966

15. An Efficient Machine-Independent Procedure for Garbage Collection of Various List
Structures
H. Schorr, W. M. Waite
Communications of the ACM V10N8, 1967

16. Recovery of Reentrant List Structures in SLIP
Joseph Weizenbaum
Communications of the ACM V12N7, 1971

17. A List Set Generator
Stuart C. Shapiro
Communications of the ACM V13N12

18. List Tracing in systems Allowing Multiple Cell-Types
Robert R. Fenichel
Communications of the ACM V14N8, 1973

19. Multiprocessing Compactifying Garbage Collection
Guy L. Steele Jr.
Communications of the ACM V18N9, 1977

127

Slip User's Manual
References

20. The Introduction of a Paging Technique into the Symmetric List Processor, SLIP
F. H. Sage, D. V. Smith
General Electric Company, Santa Barbara, CA

128

Slip User's Manual
References

Appendix I Alphabetic Method List

129

Slip User's Manual
Appendix I Alphabetic Method List

The alphabetic list below summarizes all methods within SLIP. The provides information on the
method names and return values, and where it is appropriate to use the method. The
interpretation of the columns is as follows:

• return: Return value of the method.

• SlipDatum&: SLIP defined class

• SlipHeader&: SLIP defined class

• SlipSublist&: SLIP defined class

• Iterator&: This represents a reference to one of the valid iterators, SlipReader or
SlipSequencer. The method is called using I.method() and the return value is I&.

• SlipReader&: The method was called using (SlipReader&)X.method() and returns
SlipReader&.

• SlipSequencer&: The method was called using (SlipSequencer&)X.method() and
returns SlipSequencer&.

• method: Method name and arguments. Where and argument is followed by an '=' then the
argument has a default value and the application need not specify the argument.

• SlipCell: An 'X' in a column means that the method can be used with the specified class, as
in X.method() where X is an object of the class. The following SLIP classes are represented:

• S: SlipSublist class.

• H: SlipHeader class.

• D: SlipDatum class.

• Iterator: An 'X' in a column means that the method can be used with the specified iterator as
in X.method() where X is an object of one of the following iterators. Note that where the
method can apply to either a SlipDatum, SlipHeader, or SlipDatum cell the interpretation is
that the method applies to a SlipDatum object. This corresponds to the reference returned
from the iterator by coding currentCell(), as in currentCell().method().

• SlipReader class.

• SlipSequencer class.

• Static: The method is static, an object is not required to invoke the method. It can be called
using a class specification, as in SlipDatum::method(), or with an object, as in X.method()
where X is one of SlipDatum, SlipHeader, or SlipSublist. The table identifies which classes
apply to the static method.

130

Slip User's Manual
Appendix I Alphabetic Method List

Table A.I-1: Alphabetic Method List

SlipCell Iterator static

S H D R S

return method()

Iterator& advanceLEL() X X

Iterator& advanceLER() X X

Iterator& advanceLNL() X X

Iterator& advanceLNR() X X

Iterator& advanceLWL() X X

Iterator& advanceLWR() X X

Iterator& advanceSEL() X X

Iterator& advanceSER() X X

Iterator& advanceSNL() X X

Iterator& advanceSNR() X X

Iterator& advanceSWL() X X

Iterator& advanceSWR() X X

void avslHistory(bool) X X X X

bool containsKey(SlipCell&) X X

bool contains(SlipCell&) X X

SlipHeader& create_dList() X X

SlipCell& currentCell() X X

SlipHeader& currentList() X

SlipHeader& delete_dList() X X

bool deleteAttributes(SlipCell&) X X

Iterator& deleteCell() X X

SlipCell& dequeue() X X

string dump() X X X X X

131

Slip User's Manual
Appendix I Alphabetic Method List

Table A.I-1: Alphabetic Method List

SlipCell Iterator static

S H D R S

return method()

void deleteSlip() X X X X

void dumpDList() X X

string dumpLink() X X X X X

void dumpList() X X

SlipCell& enqueue(bool) X X

SlipCell& enqueue(char) X X

SlipCell& enqueue(double) X X

SlipCell& enqueue(long) X X

SlipCell& enqueue(PTR, const void* operation=default)) X X

SlipDatum& enqueue(SlipDatum&) X X

SlipSublist& enqueue(SlipHeader&) X X

SlipSublist& enqueue(SlipSublist&) X X

SlipCell& enqueue(string*, bool constFlag=false) X X

SlipCell& enqueue(string&, bool constFlag=false) X X

SlipCell& enqueue(unsigned char) X X

SlipCell& enqueue(unsigned long) X X

SlipHeader& flush_dList() X X

SlipHeader& flush() X X

SlipCell& get(SlipCell&) X X

SlipCell& getBot() X X

ClassType getClassType() X X X X X

SlipCell* getLeftLink() X X X X X

uShort getMark() X X

string* getName() X X X X X

uShort getRefCount() X X X

132

Slip User's Manual
Appendix I Alphabetic Method List

Table A.I-1: Alphabetic Method List

SlipCell Iterator static

S H D R S

return method()

SlipCell* getRightLink() X X X X X

SlipState getSlipState() X X X X

SlipCell& getTop() X X

SlipDatum& insLeft(bool) X X X X X

SlipDatum& insLeft(char) X X X X X

SlipDatum& insLeft(const PTR, const void*
operation=default)

X X X X X

SlipDatum& insLeft(const string*, bool constFlag=false) X X X X X

SlipDatum& insLeft(const string&, bool constFlag=false) X X X X X

SlipDatum& insLeft(double) X X X X X

SlipDatum& insLeft(long) X X X X X

SlipDatum& insLeft(SlipDatum&) X X X X X

SlipSublist& insLeft(SlipHeader&) X X X X X

SlipCell& insLeft(SlipReader&) X X X X X

SlipCell& insLeft(SlipSequencer&) X X X X X

SlipSublist& insLeft(SlipSublist&) X X X X X

SlipDatum& insLeft(unsigned char) X X X X X

SlipDatum& insLeft(unsigned long) X X X X X

SlipDatum& insRight(bool) X X X X X

SlipDatum& insRight(char) X X X X X

SlipDatum& insRight(const PTR, const void*
operation=default)

X X X X X

SlipDatum& insRight(const string*, bool constFlag=false) X X X X X

SlipDatum& insRight(const string&, bool constFlag=false) X X X X X

SlipDatum& insRight(double) X X X X X

133

Slip User's Manual
Appendix I Alphabetic Method List

Table A.I-1: Alphabetic Method List

SlipCell Iterator static

S H D R S

return method()

SlipDatum& insRight(long) X X X X X

SlipCell& insRight(SlipDatum&) X X X X X

SlipSublist& insRight(SlipHeader&) X X X X X

SlipCell& insRight(SlipReader&) X X X X X

SlipCell& insRight(SlipSequencer&) X X X X X

SlipSublist& insRight(SlipSublist&) X X X X X

SlipDatum& insRight(unsigned char) X X X X X

SlipDatum& insRight(unsigned long) X X X X X

bool isAVSL(const SlipCellBase*) X X X X

bool isData() X X X X X

bool isDeleted() X X X X X

bool isDiscrete() X X X X X

bool isEmpty() X X X X

bool isEqual(SlipHeader&) X X

bool isHeader() X X X X X

bool isName() X X X X X

bool isNumber() X X X X X

bool isPtr() X X X X X

bool isReal() X X X X X

bool isString() X X X X X

bool isSublist() X X X X X

bool isTemp() X X X X X

bool isUnlinked() X X X

short listDepth() X

SlipCell& moveLeft(SlipCell&) X X X X X

134

Slip User's Manual
Appendix I Alphabetic Method List

Table A.I-1: Alphabetic Method List

SlipCell Iterator static

S H D R S

return method()

SlipCell& moveLeft(SlipReader&) X X X X X

SlipCell& moveLeft(SlipSequencer&) X X X X X

SlipCell& moveListLeft(SlipHeader&) X X X X X

SlipCell& moveListLeft(SlipReader&) X X X X X

SlipCell& moveListLeft(SlipSequencer&) X X X X X

SlipCell& moveListLeft(SlipSublist&) X X X X X

SlipCell& moveListRight(SlipHeader&) X X X X X

SlipCell& moveListRight(SlipReader&) X X X X X

SlipCell& moveListRight(SlipSequencer&) X X X X X

SlipCell& moveListRight(SlipSublist&) X X X X X

SlipCell& moveRight(SlipCell&) X X X X X

SlipCell& moveRight(SlipReader&) X X X X X

SlipCell& moveRight(SlipSequencer&) X X X X X

SlipCell& pop() X X

void printAVSL(string) X X X X

void printClassSizes() X X X X

void printDList() X X

void printFragmentList(string) X X X X

void printList() X X

void printList(ostream&) X X

void printMemory(string) X X X X

void printState(string) X X X X

SlipCell& push(bool) X X

SlipCell& push(char) X X

SlipCell& push(double) X X

135

Slip User's Manual
Appendix I Alphabetic Method List

Table A.I-1: Alphabetic Method List

SlipCell Iterator static

S H D R S

return method()

SlipCell& push(long) X X

SlipCell& push(PTR, const void* operation=default)) X X

SlipDatum& push(SlipDatum&) X X

SlipSublist& push(SlipHeader&) X X

SlipSublist& push(SlipSublist&) X X

SlipCell& push(string*, bool constFlag=false) X X

SlipCell& push(string&, bool constFlag=false) X X

SlipCell& push(unsigned char) X X

SlipCell& push(unsigned long) X X

SlipCell& put(SlipCell&,SlipCell&) X X

uShort putMark() X X

SlipDatum& replace(bool) X X X X

SlipDatum& replace(char) X X X X

SlipDatum& replace(const PTR, const void* operation=null) X X X X

SlipDatum& replace(const SlipDatum&) X X X X

SlipSublist& replace(const SlipHeader&) X X X X

SlipSublist& replace(const SlipSublist&) X X X X

SlipDatum& replace(const string*, bool constFlag=false) X X X X

SlipDatum& replace(const string&, bool constFlag=false) X X X X

SlipDatum& replace(double) X X X X

SlipDatum& replace(long) X X X X

SlipCell& replace(SlipReader&) X X X X

SlipCell& replace(SlipSequencer&) X X X X

SlipDatum& replace(unsigned char) X X X X

SlipDatum& replace(unsigned long) X X X X

136

Slip User's Manual
Appendix I Alphabetic Method List

Table A.I-1: Alphabetic Method List

SlipCell Iterator static

S H D R S

return method()

SlipDatum& replaceBot(bool) X X

SlipDatum& replaceBot(char) X X

SlipDatum& replaceBot(const PTR, const void*
operation=null)

X X

SlipDatum& replaceBot(const SlipDatum&) X X

SlipSublist& replaceBot(const SlipHeader&) X X

SlipSublist& replaceBot(const SlipSublist&) X X

SlipDatum& replaceBot(const string*, bool constFlag=false) X X

SlipDatum& replaceBot(const string&, bool constFlag=false) X X

SlipDatum& replaceBot(double) X X

SlipDatum& replaceBot(long) X X

SlipDatum& replaceBot(unsigned char) X X

SlipDatum& replaceBot(unsigned long) X X

SlipDatum& replaceTop(bool) X X

SlipDatum& replaceTop(char) X X

SlipDatum& replaceTop(const PTR, const void*
operation=null)

X X

SlipDatum& replaceTop(const SlipDatum&) X X

SlipSublist& replaceTop(const SlipHeader&) X X

SlipSublist& replaceTop(const SlipSublist&) X X

SlipDatum& replaceTop(const string*, bool constFlag=false) X X

SlipDatum& replaceTop(const string&, bool constFlag=false) X X

SlipDatum& replaceTop(double) X X

SlipDatum& replaceTop(long) X X

SlipDatum& replaceTop(unsigned char) X X

137

Slip User's Manual
Appendix I Alphabetic Method List

Table A.I-1: Alphabetic Method List

SlipCell Iterator static

S H D R S

return method()

SlipDatum& replaceTop(unsigned long) X X

SlipHeader& reset() X

SlipSequencer& reset(SlipCell&) X

SlipSequencer& reset(SlipHeader&) X

SlipSequencer& reset(SlipReader&) X

SlipSequencer& reset(SlipSequencer&) X

SlipReader& resetTop() X

unsigned size_dList() X X

unsigned size() X X

void slipInit(long, long) X X X X

SlipHeader& splitLeft(SlipCell&) X X

SlipHeader& splitRight(SlipCell&) X X

void sysInfo(ostream&) X X X X

string toString() X X X X X X

SlipCell& unlink() X X X X

SlipReader& upLevel() X

void write() X X

void write(string&) X X

void write(ostream&) X X

void writeQuick() X X

void writeQuick(string&) X X

void writeQuick(ostream&) X X

string writeToString() X X

138

Slip User's Manual
Appendix I Alphabetic Method List

Table A.I-2: SlipReader Alphabetic Method List

return ((SlipRead&)X).method() Description

int getError()

SlipHeader& read(string filename) Parse and input file given by
filename.

bool registerUserData(const SlipDatum&) Register a (single) Application
Data class

bool registerUserData(int size, SlipDatum* userData[]) Register an array of Application
Data classes

bool registerUserData(int size, SlipDatum userData[]) Register an array of Application
Data classes

void setDebugON(int debugFlag = INPUT) Turn debug on, default
SlipRead::INPUT

139

Appendix II SlipCell Dump Styles

Slip User's Manual
Appendix II SlipCell Dump Styles

Dumps are formatted versions of specific information contained in a SlipCell. They consist of a
common prefix, generated by dumpLink(). The remainder of the dump format is generated by
dumps for given SlipCells, SlipHeader.dump() on page 57, SlipSublist.dump() on page 66, and
SlipDatum.dump() on page 67. The SlipDatum dumps are granulated into dumps for bool,
CHAR, UCHAR, LONG, ULONG, DOUBLE, string and PTR. Each of these granulated dumps
have outputs characteristic of the individual types with the notation that the PTR dump is defined
by the application and not SLIP.

SLIP operational information is included in the output and contains specific pointer values and
representation of internal operating data. Access to this information is restricted with limited
access through method calls.

SlipCell link pointers can have the following values:

 1. hexadecimal value: The location of the cell in memory. All locations are designated by “0x”
with the number of hexadecimal determined by the operating system SLIP was compiled for
(32-bit of 64-bit).

 2. NULL: The SlipSublist cell is not on a list. Both SlipCell pointers will be null.

 3. TEMPORARY: The SlipDatum cell is on the runtime stack. Both SlipCell pointers will be
TEMPORARY.

 4. DEADBEEF: The SlipDatum cell is on the AVSL. The left link will be 0xDEADBEEF and
the right link will be a hexadecimal value – a pointer to another SlipCell on the AVSL – or
NULL, indicated that the current cell is the last one in the AVSL.

A description of each format is given below along with examples.

Figure A.II-1: Common Dump Prefix

The operator pointer points to a static class object which performs type specific operations. Each
SlipCell participates with the same set of operations but in a type specific way, and has the same
properties by the values are specific to the type. The SlipCell characteristics tailored to the type is
given in the static object pointed to by the operator pointer. This is an internal SLIP interface not
available to the application, except for PTR types, see SlipDatum(const PTR, void*
operation=null).

The address field will always contain a valid memory address.

141

[type] address::<pointer pointer> [operator pointer]

[bool] 0x22a820::<TEMPORARY TEMPORARY> [operator pointer]

Slip User's Manual
Appendix II SlipCell Dump Styles

The valid type fields are:

SlipHeader SlipHeader()

SlipSublist SlipSublist(new SlipHeader())

bool SlipDatum((bool)X)

char SlipDatum((CHAR)X)

uchar SlipDatum((UCHAR)X)

long SlipDatum((LONG)X)

ulong SlipDatum((ULONG)X)

double SlipDatum((DOUBLE)X)

SlipDatum((PTR)X) value determined by the application

 A SlipHeader dumps internal information on the number of SlipSublists referencing the current
list (RefCnt), the value of an application data mark (mrk:), and a pointer to a descriptor list or
null.

A full dump for a SlipHeader object on a 64 bit system is shown in Figure A.II-2: SlipHeader
Dump Format. The common prefix is shown followed by the specific SlipHeader field values for
the reference count, the mark and and the descriptor pointer. The list is empty (the left and right
link pointers point to the SlipHeader object) and the list is referenced in one other list (RefCnt is
1). The application has not applied a application specific data value (mrk is 0) and there is not
descriptor object.

[header] 0x600060cf0::<0x600060cf0 0x600060cf0> [0x600010dd0] RefCnt: 1 mrk: 0
Descriptor NULL

Figure A.II-2: SlipHeader Dump Format

The SlipSublist dumps the common dump prefix followed by a pointer (→) to the SlipHeader
dump of the referenced list. A SlipSublist object must be associated with a SlipHeader.

Figure A.II-3: SlipSublist Dump Format

Figure A.II-3: SlipSublist Dump Format shows that the object is not on a list (the left and right
link pointers in the common prefix are null) and that the list pointed to is empty (the left and
right link pointers point to the address of the SlipHeader object). By comparing the list object

142

[sublist] 0x600060e70::<NULL NULL > [0x600010fb0]
-> [header] 0x600060cf0::<0x600060cf0 0x600060cf0> [0x600010dd0] RefCnt: 1 mrk: 0
Descriptor NULL

Slip User's Manual
Appendix II SlipCell Dump Styles

address we see that the list pointed to is the same one shown in Figure A.II-2: SlipHeader Dump
Format.

The format for SlipDatum cells are the same, but the output value depends on the type of cell
being dumped. Each type has a different output. See Figure A.II-4: SlipDatum Dump Format .

Figure A.II-4: SlipDatum Dump Format

We see that all the SlipDatum cells are on the runtime stack (the SlipDatum address is very
different from the operation pointer address – which comes from the heap) and that the common
dump prefix is suffixed by a '='. The type/values are given in Table A.II-1: SlipDatum Dump
Values.

Table A.II-1: SlipDatum Dump Values

type value

bool true or false

CHAR Hex for non-graphic ASCII, otherwise the graphic character

UCHAR Hex for non-graphic ASCII, otherwise the graphic character

LONG Integer

ULONG Integer

DOUBLE Formatted floating point

PTR Application dependent

143

[bool] 0x22a820::<TEMPORARY TEMPORARY> > [0x600010ca0] = true
[char] 0x22a850::<TEMPORARY TEMPORARY> > [0x600010d00] = 'A'
[uchar] 0x22a880::<TEMPORARY TEMPORARY> > [0x600011060] = 'B'
[long] 0x22a8b0::<TEMPORARY TEMPORARY> > [0x600010e20] = 4660
[ulong] 0x22a8e0::<TEMPORARY TEMPORARY> > [0x6000110c0] = 9320
[double] 0x22a910::<TEMPORARY TEMPORARY> > [0x600010d60] = 1.2340000

Copying
FDL 1.3

Slip User's Manual
CopyingFDL 1.3

 1 .0 GNU Free Documentation License (FDL 1.3)

The GNU Free Documentation License (FDL 1.3) or later version is acceptable. The FDL 1.3
version is given below.

 1.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

 1.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in
a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

145 of 152

Slip User's Manual
CopyingFDL 1.3

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats
which do not have any title page as such, "Title Page" means the text near the most prominent
appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the
Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License

146 of 152

Slip User's Manual
CopyingFDL 1.3

applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

 1.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in exchange for copies. If
you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

 1.4 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

147 of 152

Slip User's Manual
CopyingFDL 1.3

 1.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release you
from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.
• F. Include, immediately after the copyright notices, a license notice giving the public permission

to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least

the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may
omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

148 of 152

Slip User's Manual
CopyingFDL 1.3

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

 1.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original

149 of 152

Slip User's Manual
CopyingFDL 1.3

documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements".

 1.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

 1.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation's users beyond
what the individual works permit. When the Document is included in an aggregate, this License does
not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

 1.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the

150 of 152

Slip User's Manual
CopyingFDL 1.3

requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

 1.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

 1.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a version permanently authorizes
you to choose that version for the Document.

 1.12 RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that
publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A

151 of 152

http://www.gnu.org/copyleft/

Slip User's Manual
CopyingFDL 1.3

public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor
Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published
on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first
published under this License somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

152 of 152

	1 .0 Overview
	1.1 History
	1.2 Features
	1.3 SLIP vs STL List Containers
	1.4 Theory of Operation
	1.5 C++ Implementation
	1.6 Class Architecture

	2 .0 Data
	2.1 Data Types
	2.2 Data Operations
	2.3 Simple Assignment
	2.4 Relational Operators
	2.5 Casting
	2.6 Unary Operations
	2.7 Binary Operations
	2.8 Bit and Shift Operations
	2.9 Complex Assignments

	3 .0 Common Operations
	3.1 Interrogatories
	3.2 Replacement
	3.3 Insert Operations
	3.4 Move Operations
	3.5 Debug Tools
	3.6 Miscellaneous

	4 .0 SlipCells
	4.1 SlipHeader
	4.1.1 SlipHeader Methods
	4.1.2 Description List

	4.2 SlipSublist
	4.2.1 SlipSublist – SlipHeader Methods
	4.2.2 SlipSublist Methods

	4.3 SlipDatum
	4.4 Application Data Types
	4.4.1 Strings
	4.4.2 Application Data Type

	5 .0 Iterators
	5.1 SlipSequencer
	5.2 SlipReader

	6 .0 Errors
	6.1 Theory of Operation
	6.2 Error Message Format
	6.3 Application Callback function
	6.4 Message Object Format (SlipErr)
	6.5 SlipException

	7 .0 Slip.h
	8 .0 List Input / Output
	8.1 Lexical Elements
	8.1.1 Character Set
	8.1.2 Whitespace
	8.1.3 Comments
	8.1.4 Tokens
	8.1.4.1 Separators
	8.1.4.2 Identifiers
	8.1.4.3 Keywords
	8.1.4.4 Constants

	8.2 List Language
	8.2.1 Include File Syntax
	8.2.2 Application Data Syntax
	8.2.3 Named List Syntax
	8.2.4 List Syntax
	8.2.4.1 Description List

	8.2.5 Parser Syntax Equations

	8.3 Output
	8.4 Input from a List File

	References
	Appendix I Alphabetic Method List
	Appendix II SlipCell Dump Styles
	Copying FDL 1.3

